

# Final report on the results of the Joint Sector Group activities linked to the action plan defined under the Task Force Freight Wagon Maintenance



### **Table of Contents**

| 1. | INTRODUCTION                                                                                                | 3         |
|----|-------------------------------------------------------------------------------------------------------------|-----------|
| 2. | BROKEN AXLES: STATISTICAL ANALYSIS                                                                          | 6         |
|    | 2.1. Joint Sector group: Results of failure mode and effect analysis (fmea) and Failure tree analysis (FTA) | 6         |
|    | 2.2 Results comparisons: DNV Detailment ERA/Eurostat hochumer verein (germany)                              | , 0       |
|    | Den Norske veritas: derailment study                                                                        | 7         |
|    | Statistics ERA/FUROSTAT                                                                                     | 7         |
|    | Bochumer Verein: Germany                                                                                    | 7         |
| 3. | ACTION PLAN OF THE TASK FORCE ON FREIGHT WAGON MAINTENANCE                                                  | 9         |
|    | 3.1. TF Final Report                                                                                        | 9         |
|    | 3.2. Short-term measure: The European Visual Inspection Catalogue (EVIC) for freight wagon axles            | 10        |
|    | EVIC differentiation between corrosion (x), oxidation (c) and requirements for abutment                     | 11        |
|    | EVIC sampling                                                                                               | 12        |
|    | Center Punch Mark on Wheelset Shaft                                                                         | 13        |
|    | 3.3. Mid-term measure: The European Common Criteria for Maintenance (ECCM) for freight wagon axle           | s14       |
|    | Wagon maintenance                                                                                           | 14        |
|    | Freight Wagon Wheelset maintenance                                                                          | 14        |
|    | Harmonized activities in wheelset maintenance                                                               | 14        |
|    | Harmonized NDT rules                                                                                        | 15        |
|    | Traceability                                                                                                | 15        |
|    | Continued high performance operation                                                                        | 15        |
|    | Migration of the JSG rules                                                                                  | 15        |
|    | Conclusions                                                                                                 | 16        |
|    | 3.4. Long-term measure: The European wheelset Traceability Catalogue (EWT) for freight wagon axles          | 16        |
| 4. | CONCLUSIONS                                                                                                 | 17        |
|    | ANNEX 2: FMEA/FTA analysis                                                                                  | 19        |
|    | ANNEX 3.2.A: Result of EVIC tracing April 2010 – April 2012                                                 | 38        |
|    | ANNEX 3.2.B: EUROPEAN VISUAL INSPECTION CATALOGUE (EVIC) FOR FREIGHT WAGON AXLES                            | 43        |
|    | ANNEX 3.2.C: IMPLEMENTATION GUIDE FOR THE EUROPEAN VISUAL INSPECTION CATALOGUE (EVIC) FOR                   | JR        |
|    | FREIGHT WAGON AXLES                                                                                         | 61        |
|    | ANNEX 3.2.2.A: EVIC Sampling procedure                                                                      | 75        |
|    | ANNEX 3.2.2.B: EVIC Sampling: statictical procedure and relevance                                           | 91        |
|    | ANNEX 3.2.3: Stress-concentration by centre punch mark                                                      | 94        |
|    | ANNEX 3.3: ECCM                                                                                             | 102       |
|    | ANNEX 3.4.A.: EUROPEAN WHEELSET TRACEABILITY (EWT) FOR FREIGHT WAGON AXLES Implementatio                    | n         |
|    |                                                                                                             | 120       |
|    | AININEA 5.4.D.: EUROPEAN WHEELSET TRACEABILITY (EWT) FOR FREIGHT WAGON AXLES IMPIEMENTATIO                  | 11<br>12/ |
|    | 3(0(0))                                                                                                     | 134       |



#### 1. Introduction

After the heavy railway accident in Viareggio in June 2009, the European Commission established a Task Force (TF, named *"Freight Wagon Maintenance"*) under the leadership of the European Railway Agency, in order to examine the following technical subjects<sup>1</sup>:

- exchange and analyze information related to broken axles/fatigue issues and relevant testing methods;
- assist the Sector and NSAs to establish sound evidence and advice on the causes of the broken axles problem;
- propose and develop appropriate controls and monitoring tools;
- propose measures to review the different maintenance regimes existing across Europe and draw up a program for further harmonization;
- > evaluate the role of standards for wheelsets in the different countries.

The TF developed its works through 7 meetings, since September 2009 till the end of June 2010, supported by the activities performed aside by the Joint Sector Group (JSG). A first agreement on the technical measures to be implemented in an Action Plan was reached on December 2009, during a meeting held in Viareggio.

A Final Report on the activities of the Task Force was emitted by ERA on 28<sup>th</sup> September 2010, describing the agreed technical measures and the expected results. The Joint Sector Group took over the task to supervise the running activities that were put in place, analyze the results and transfer the relevant outcomes into standards.

This JSG Final Report, therefore, describes the final results of the performed work and provides evidence on the conclusions drawn by the Sector within the frame of this task as a justification for JSG final recommendations. The relevant technical outcomes of this Action Plan are already under implementation into EN standards, showing the new *State Of The Art* concerning the maintenance of freight wagon wheelsets in Europe.

For a correct reading of this document and an appropriate evaluation of the technical measures mentioned hereunder, two elements need to be stressed:

- The Task Force activities focused, since the beginning, on corrosion and traceability as those issues were identified as main items and raised by some National Safety Authorities. All the measures of the Action Plan were defined under this framework. As a consequence, the goal of the JSG/TF works was not to address in general derailment issues. Therefore, the JSG activities described in this document are complementary to the work recently performed by DNV ("Study of freight train derailments") and other ERA activities concerning derailment in general.
- The technical measures of the Action Plan will contribute to further increase of the general railway safety level, but the induced costs might cause undesired shift to less safe road transportation. The safety level of railway and road are illustrated below:

<sup>&</sup>lt;sup>1</sup> source: ERA Final Report \_Sept.2010





Figure 1: Number of accidents in freight transport in 2007 in Germany<sup>2</sup> (# of accidents per billion tkm, source: German Federal Statistical Office)



Figure 2 Accidents with Dangerous Goods in Germany (source: German Federal Statistical Office)<sup>3</sup>

 <sup>&</sup>lt;sup>2</sup> source: presentation at Safety Conference 08/09, Lille, 20/08/09\_CER-ERFA-UIP-UIC position
<sup>3</sup> source: presentation at Safety Conference 08/09, Lille, 20/08/09\_CER-ERFA-UIP-UIC position



Although, we always work to reach the highest safety level, the absolute safety, zero accident for an indefinite period of time is unachievable. Thus, when enforcing any new safety measure, one should always take into account the consequences on the global transport safety.

In addition, the general tendency for railways over a long period of time indicates clear improvements for the railway safety system. As the next picture shows, the fatal train collisions and derailments involving 5 or more fatalities per decade, declined by almost 50% over the last 25 years.



#### Fatal Train Collisions and Derailments per Billion Train Kilometres EU25 plus Norway and Switzerland

Figure 3: Number of fatal train collision and derailments involving 5 or more fatalities<sup>4</sup>

Right after the Viareggio accident and in the time of urgency, the TaskForce decided to define and implement additional measures dealing, as already stated above, mainly with the corrosion and traceability issues as well as addressing the need for harmonised rules on wheelsets maintenance criteria. This document describe the results and aftermaths.

The main results and detailed information about the program, as well as different documents issued by the JSG are available on *http://www.jsgrail.eu*.

<sup>&</sup>lt;sup>4</sup> source: "Investigating links between historic accident rate reduction and underlying changes" – INTERFLEET TECHNOLOGY LIMITED – 06/12/2011



#### 2. Broken axles: statistical analysis

Beside the work done for EVIC, ECCM and EWT, the JSG worked on a common risk analysis for wheelsets including bearings. Reviews among experts from various companies were held to analyze and quantify the risks linked to wheelset failures. The JSG, under this working topic, defined a FMEA in order to classify and sort out the risks linked to complete wheelset failures. In particular, a system definition, operational conditions, as well as a product breakdown structure were elaborated.

The risk assessment was conducted using the quantitative method "Fault Tree Analysis" (FTA) and the hazard identification was done using the semi-quantitative "Failure mode and effect analysis" (FMEA). Through the FTA, single root events were combined and assessed by defining the probability of occurrence. The risks, root causes and failure modes were listed, sorted and ranked depending on the severity and occurrence. The detailed results of the FMEA and FTA analysis are shown in Annex 2.

## 2.1. Joint Sector group: Results of failure mode and effect analysis (fmea) and Failure tree analysis (FTA)

The FMEA identified 152 root causes and quantified them by analyzing the linked factors of severity, detectability and frequency. The results were multiplied in order to define the according RPN (Risk priority number). As the maximum RPN for these three factors is defined by the value 1000, JSG decided for the purpose of the analysis and in order to keep the overview, to focus on RPN over 150. However, the number value of 150 should not be seen as a sector value or an absolute value for acceptable risks but only a limit to address the root causes with the highest priority (top priority). Except for visual clearness, there is no influence on the result of the FMEA due to this limitation. Based on these root causes a FTA was created.

"Derailment due to wheelset damages" was defined as top event . The top event was split up into 118 root events, structured on 6 hierarchic levels. Nine major players delivered data for the FTA analysis, based on inputs from technical experts experiences, groups and internally available statistics. It has to be noted that only one of these companies (counting for about 5% of all axles in this FTA) still uses **tyred wheels**. The sector itself agreed to stop tyred wheels operation by 2020 at the latest. Since January 2012 rehabilitation is stopped, from January 2013 the limit of tyre thickness will be extended by 20%. Having this in mind the result without tyred wheels is of interest.<sup>5</sup>

In summary, the results for the top event "derailments due to wheelset damages" are as follows:

- 57% due to an axle failures (thereof 47% consequently to a hot axle box, 2% to deformed axles, 8% to other axle causes)
- 32% due to wheels failures
- 11% due to wrong tread profile

The most critical path identified and linked to the axle was:

Mechanical shock  $\rightarrow$  spalling in the bearing  $\rightarrow$  hot axle box  $\rightarrow$  broken axle journal  $\rightarrow$  broken axle  $\rightarrow$  derailment.

<sup>&</sup>lt;sup>5</sup> For more details (www.jsgrail.eu): see JSG letter from 01.11.2011: Use of tyred wheels in tread braked freight wagons with vmax>80km/H



#### 2.2. Results comparisons: DNV Derailment, ERA/Eurostat, Bochumer Verein (D)

In order to assess further the relevance of the results, the JSG undertook a comparison of the findings with 3 other statistical sources for accidents linked to broken axles.

#### Den Norske veritas: derailment study

The results of the study of Den Norske Veritas (DNV): "Intermediate results of derailment study of DNV", in the part: "Analysis of past derailments", 06.May 2011, are very close to what the JSG found out via FMEA/FTA: wheels contribute to the same "portion of risks" for wheelset based derailments: 32%, and axles counting for 54% (JSG) resp. 68% (DNV). Two independent studies leading to the same results increase the reliability of the JSG FMEA results.

#### Statistics ERA/EUROSTAT

Today we still have sourcing and processing differences for the statistical data collected by ERA and EuroStat on railway accidents. For 2013 harmonization is planned. An example for inconsistent data is the accident of 2009 near St-Peter-Seitenstetten, which was collected twice: once in the Austrian and once in the German statistics. Even if it would have been possible to get results out of historical data for Europe, the JSG decides to concentrate only on Germany and on the efforts of Dr. Köhler from Bochumer Verein, who is a renowned axle expert, who collected the number of broken axles, for both freight and passenger, and the corresponding mileage for the period from 1880 till 2010!



#### Bochumer Verein: Germany





As graphically represented in figure 4, the statistical data collected for Germany shows a massive reduction of the number of axle breakages in the past 50 years and confirms the statements of this final report<sup>6</sup>: today's railway traffic relies on a very high level of safety.

Furthermore, an analysis on the evolution of total mileage of all German axles until one could break was conducted. The results show that the mileage has increased significantly since 1980<sup>7</sup>. For the years 2006 to 2010 there is a gap between the number of broken axles in total and the figures of the DBAG which owns the majority of axles.

| 1070         | <b>.</b> - |                                                                     |
|--------------|------------|---------------------------------------------------------------------|
| 1070         |            |                                                                     |
| 1960         | 57         | 465 Mio. km/Wellenbruch                                             |
| 1955<br>1960 | 225<br>57  | 117 Mio. km/Wellenbruch<br>465 Mio. km/Wellenbruch                  |
| 1930<br>1940 | 88<br>277  | 414 Mio. km/Wellenbruch<br>380 Mio. km/Wellenbruch                  |
| 1880<br>1900 | 80<br>94   | Wellenbrüchen<br>100 Mio. km/Wellenbruch<br>256 Mio. km/Wellenbruch |

Figure 5: average mileage between two broken axles

Based on ERA's data for Germany<sup>8</sup>, the average wheelset-mileage till an axle may crack has increased to 39'040'000'000 km in 2009. Based on the data collected by DBAG, the average mileage for the years from 2006 to 2010 increased even to 63'486'000'000 km. The difference confirms the need for a further harmonization on collecting and defining statistical data.

### Finally, the results confirmed that in 90% of the cases the reason for an axle to break is linked to the bearings.

As stated above, for 2009 we assume that one single axle cracked in Germany, although the break has occurred in Austria with a German wagon. Taking into account the mileage of 39'040'000'000 km till an axle may crack, the total mileage of 1'002'900'000 Trainkm in 2009 in

<sup>&</sup>lt;sup>6</sup> See 1. Introduction

<sup>&</sup>lt;sup>7</sup> See Figure 5 hereunder

<sup>&</sup>lt;sup>8</sup> Figures from ERA for the 4 years 2006, 2007, 2008, 2009



Germany<sup>9</sup> and a low average speed of 50 km/h, there could be an axle crack after 780'000'000 operating hours of a wheelset in Germany (average figure for freight and passenger operation).

Applying the same principles to the whole of Europe, with an average wheelset-mileage till an axle may crack of 1'983'000'000 km for the years 2006 till 2009, a total mileage of 4'071'900'000 Trainkm and an average speed of 50 km/h, there could be an axle crack after 39 Mio operating hours of a wheelset. With the calculations above the whole wheelset (including axle, bearings and other frunctions) achieves an equivalent safety level as defined by the SIL 4 criteria  $10^{-9}$ , which originally applies for electronic devices.

In conclusion and with regard to the whole railway system, the most effective measures for a further reduction of risks, may be those linked to level crossings, improving shunting yards and signaling systems. In general and compared with the aviation sector, the safety level for technical systems in railways is considered high.

After this detailed analysis of the Joint Sector Group, the linked comparison and coming back to the freight wagon wheelsets as the object of the works of the TF, the most critical element is not seen as being the axle itself, but the bearings having an impact on the axle. As such, the JSG attest that the impact of measures linked to derailments due to broken axles as for reducing fatalities and serious injuries risks is very low<sup>10</sup>.

While in the last three years the major efforts of the sector were linked to axles and especially axles corrosion where only a moderate effect (at high costs) on the general safety level can be expected, the JSG has called for a closing of the reporting on the subject.

#### 3. Action plan of the Task Force on Freight Wagon Maintenance

#### 3.1. TF Final Report

As mentioned in the introduction, the constitution of the ERA Task Force was a reaction to the Viareggio accident and its consequences. The moment was peculiar: there was a strong demand to quickly identify technical solutions able to reduce the risk or the probability of similar accidents, even if not 100% scientific based. The effects of the accident were dramatically evident but the causes were not exactly known at that moment.

The items that were first raised after the accident were:

- Corrosion on the broken section
- > Difficulties in tracing immediately the history of the component
- > A need for harmonized maintenance criteria

Consequently and to address specifically those items, the following measures were identified and constitute the Task Force Action Plan :

- > EVIC: an European Visual Inspection Catalogue
- SAMPLING: for comparison of NDT results on Visual Inspection results: EVIC validation

<sup>&</sup>lt;sup>9</sup> See ERA Railway Safety Report of 2011

<sup>&</sup>lt;sup>10</sup> See ERA report in RISC62 on prevention and mitigation of freight train derailments



- EWT: an European Wheelset Traceability
- > ECCM: harmonized European Common Criteria for wheelset Maintenance

Each of these measures/tools, which were developed and implemented "into the field" under different timeframes, contributed to a better understanding of the issues by the sector and the authorities and has given the expected answers in the SHORT, MID and LONG term periods.

A detailed description of the different actions and of their results is given in the following sections.

The final and stabilized effects on the general railway safety level linked to the implementation of the measures will be more evident after the completion of the ongoing maintenance intervals for the whole European rolling stock material (considering the different maintenance plans currently applied, around 6 to 10 years after the start of the Action Plan).

## 3.2. Short-term measure: The European Visual Inspection Catalogue (EVIC) for freight wagon axles

The EVIC - program, as one of the common decisions under the TF, is a quick response to improve the axle surface status of the European freight wagon fleet. This harmonized maintenance program of inspection on axles was developed in 2009 and is running since April 2010.

Visual inspection aims to increase the cumulative probability of service defects detection by introducing a visual inspection of the axle surface. The provisions of EVIC define, for the maintenance workshop staff, the criteria to visually inspect axles against corrosion and mechanical damages. EVIC inspections are carried out in maintenance workshops during wagon light maintenance (i.e. without dismounting the wheelsets from the wagon). An axle which does not meet the EVIC-criteria will be sorted out and removed from service. As such the wheelset will be handed over to medium or heavy wheelset maintenance or if it's possible in accordance to the criteria repaired in situ.

In the wheelset maintenance, the axle surface will be treated in accordance with ECCM criteria <sup>11</sup> and non-destructive tests (NDTs) on all parts of the axle will be performed. Through this procedure, the EVIC program aims at improving the general quality level of the axles in Europe. The visual inspections are applicable for painted and unpainted axles.

To ensure a harmonized reporting, the results of an EVIC visual check are classified under the following categories.

- EVIC OK axle without defect
- EVIX C axle with coating damage (only for painted axles)
- EVIC X axle with mechanical or surface defect
- Other axle sorted out by regular maintenance rules (e.g GCU)

In order to trace the results on a Pan European Level, the JSG introduced a monitoring program with the Joint EVIC Body of the respective country. From April 2010 to April 2012

<sup>&</sup>lt;sup>11</sup> See Chapter 3.3



more than 1.4 Million axles and 375.000 freight wagons from 16 countries and 163 keepers have been checked in accordance to the EVIC criteria defined in Annex 3.2.A.

Through the reporting activities, the JSG could observe an evolution in the number of axles reported in each EVIC category, showing an increase of "EVIC-OK" axles from about 50 % to 60 % and a decrease of "EVIC-C" axles. The number of "EVIC-X" axles has been nearly constant and very stable over 2 years, staying at a very low level of 2 %.

The level of "EVIC-Other" axles of about 8 % confirms that the today's common maintenance requirements work well already. Due to the collection of the data from a large fleet from the whole of Europe and the presentation of the figures "per month", there are natural differences in the evolution. However, the figures show clearly the improvement of the surface status of the European freight axle population. In service it is not possible to reduce the number of defects – especially for "EVIC X" and "EVIC C" - to zero, but in combination with the rest of the European program it is the right way to ensure safe service of axles mounted on freight wagons.

The detailed content of EVIC is described in the documents "EUROPEAN VISUAL INSPEC-TION CATALOGUE (EVIC) FOR FREIGHT WAGON AXLES" (Annex 3.2.B) and the "IMPLEMEN-TATION GUIDE FOR THE EUROPEAN VISUAL INSPECTION CATALOGUE (EVIC) FOR FREIGHT WAGON AXLES" (Annex 3.2.C).

According to the figures, collected during nearly two years, the JSG can confirm that the EVIC program is well implemented in Europe and has become a natural standard-of-work performed by maintenance workshop staffs. In addition, the EVIC requirements have been integrated in the GCU and will be part of the revised EN 15 313.

In this sense, and because the main financial burden is linked to the pan European EVIC tracing program<sup>12</sup>, impacting and preventing the competitiveness of the sector, the JSG will stop the tracing of the whole European axles population, bearing in mind that:

1. the reporting structure for "EVIC-X" will be done under the GCU rules and that

2. any issue linked to it may be raised via the ECM certification process to the authorities.

## EVIC differentiation between corrosion (x), oxidation (c) and requirements for abutment

In order to better understand the differentiation made from the beginning between EVIC axles categories, the JSG took into account the different types and forms of corrosion for different material in particular for steel. In the EVIC the distinction was made between:

• Atmospheric corrosion or oxidation: uniform and thin layer on the axle surface (case C) does not create stress concentration

AND

<sup>&</sup>lt;sup>12</sup> from the workshop, to the keeper, to the EVIC bodies, to the JSG, to the authorities



• Chemical corrosion: concentrated patterns, creating many craters often very deep and locally creates stress concentration (case X).

This distinction was validated further by the sampling program: there is no significant difference between "EVIC-OK" or "-C" axle in terms of NDT defects. This distinction was also validated by the return of experience of the former incumbent railways for painted axles in France and unpainted axles in Belgium. As an example, picture 11 of the EVIC catalogue is an atmospheric corrosion without crater (oxidation). It has to be categorized under EVIC class "C",not "X". Taking into account the results of the collected data and the results of the sampling program, the JSG can attest that the differentiation remains valid and that there is no need to adapt it, bearing in mind that uniform corrosion does not create higher risks!

Regarding the discussions on the abutment area and as written in the EVIC, this area is not always easily visible when the wheelset is under a wagon. However, the stress safety margin is higher in abutment areas than in other areas, for all type of axles. Moreover, the sampling program shows that in the abutment area no special risk is indicated.

Furthermore, some countries have already integrated parts of the EVIC program and have taken the corrosion and oxidation differentiation into account in their maintenance schemes for a long time now. This is one reason, why there are some differences in the EVIC results from the different European countries.

Not all the countries started at the same level when EVIC checks were introduced.So one of the best achievements of the works discussed in the TF and within the JSG, was to learn from best practices in the involved countries, to adapt and apply them in a harmonized way all over Europe.

#### EVIC sampling

In order to assess the efficiency and measure the accuracy (i.e the probability of finding defects) by the means of the visual checks of the EVIC program, the EVIC sampling program was introduced. Its purpose was to check if there is an increase in the cumulative probability of service defects detection by the means of visual checks between two NDT. In this EVIC sampling program, a comparison of the NDT results of "EVIC failed" and "EVIC passed" axles was performed. The details of the program are shown in Annex 3.2.2 A. For the purpose of clarity, a summary of the results is provided below:

*For "EVIC-OK" axles* (5'971 sampled): 4 are NDT NOK before treatment, 3 are NDT OK after treatment and 1 NDT NOK after treatment with a defect on the journal, which can in fact not be detected by an EVIC visual inspection on the axle itself.

*For "EVIC-C" axles* (4'566 sampled): 17 are NDT NOK before treatment,14 are NDT OK after treatment, and 3 are NDT NOK after treatment (but only 1 showing a defect in the EVIC zone).

*For "EVIC-NOK" axles* (2'979 sampled): 322 are NDT NOK before treatment, 318 in EVIC zone and 4 out of EVIC zone):

- 289 are NDT OK after treatment;
- 15 are NDT NOK after treatment;
- 18 cannot be treated due to too small shaft diameter



From the 13'516 wheelsets included in the sampling program, the application of normal maintenance rules implied the scrapping of 560 wheelsets. It should be noted that all the wheelsets with incomplete data are not included in the sampling analysis.

The results of the sampling program show clearly that the **EVIC program** is valuable, because the probability to find an NDT positive axle in the "EVIC-NOK" set is higher than the probability to find an NDT-positive axle in the "removed by EVIC population" (i.e. "EVIC-OK" or "EVIC-C"). The classification under the different risk domains shows no significant distinction between the NDT – results. EVIC is an efficient tool to sort out potentially NDT-positive axles and thus enhances the general safety level of freight traffic in Europe. However, it has to be mentioned that an axle showing a NDT indication after treatment is not automatically a potential risk and doesn't imply a crack or a growing capable crack. Detailed informations of the statistical relevance of the analysed results are provided under ANNEX 3.2.2.B: EVIC Sampling: statistical procedure and relevance.

#### Center Punch Mark on Wheelset Shaft

At the start of the EVIC checks it was noted that certain wheelsets showed a conical punch mark of about 2 mm width and 2 mm depth in the middle of the wheelset shafts between the wheels. As such they bear the danger of being classified as EVIC X axles.

East European railways companies (both public and private) have in service "punched axle". Its purpose was to have a mark on the central axles in order to identify the central position and the symmetry of the wheelset.

This information may have been helpful in the past, but nowadays this information is totally useless.

According to the EVIC catalogue, this type of machining is to be considered as a defect, so the axles must be checked, machined in order to eliminate the defect (according with the minimum axle body admissible diameter), or scrapped.

Referring to European EN13261 standard for axle manufacturing dimension and tolerance surface, this type of mark is not allowed and must be avoided. Following the recommendations of the EN standards, the central marking on new products must be prohibited because it is incoherent with axle calculations, design, manufacturing and maintenance prescriptions.

In conclusion, as none of the European Standards dealing with axle design and axle maintenance have taken into account these marks, the JSG strongly recommends to remove this type of marking by grinding or turning the axle during wheelset maintenance, in compliance with minimum tolerances allowed on the body to the particular axles considered.



## 3.3. Mid-term measure: The European Common Criteria for Maintenance (ECCM) for freight wagon axles

Harmonization of maintenance criteria for freight wagon axles has been defined as a key element of the mid-term measures.

Wagon maintenance timeframe and wheelset maintenance timeframe are usually dissociated. But these 2 maintenance stops represent the same opportunity to check the axle status. The JSG decided to harmonize the maintenance criteria as described in Annex 3.3. The main content of the ECCM are summarized below:

#### Wagon\_maintenance

Wagon Maintenance is divided into 2 levels: light maintenance as defined by the GCU and heavy maintenance corresponding to revision or major overhaul of wagon. The following criteria apply:

EVIC catalogue as the visual checks criteria for axles EVIC criteria are more restrictive for corrosive conditions operation, only cases A or B apply

#### Freight Wagon Wheelset maintenance

Maintenance of freight wagon wheelsets is divided into 3 maintenance levels:

- light maintenance corresponding to reprofiling of wheels
- medium maintenance corresponding to overhaul of wheelset (revision of bearing and reprofiling of wheels)
- heavy maintenance corresponding with change of wheels

#### Harmonized activities in wheelset maintenance

#### Light Maintenance level

The triggering of this maintenance level depends on the operating conditions (wheel wear). Usually, this operation occurs several times between 2 overhauls of wheelsets.

Treatment or withdrawal of axles with local and severe defects (UIC category 4) is now the EU wide harmonized criteria during reprofiling.

#### Medium maintenance level

Maximum interval between 2 overhauls depends on the mileage (for example max.600,000 / 700,000 km) and the period of time (for example average 12/13 years).

Criteria about UIC category 4 apply also in Medium maintenance. In addition, axles with large and heavily corroded areas, strongly and uniformly pitted surfaces, are treated or withdrawn.



#### **High Maintenance level**

Same criteria as for Medium maintenance apply. Furthermore, a 182 mm minimum wheel set diameter for axles type A operated at 20t has been decided.

#### Harmonized NDT rules

Complete Non Destructive Test – NDT - on all axle sections in the "Medium Maintenance Level" has been decided, complete Magnetic Test – MT - on the total axle surface in the highest maintenance level as well.

Further developments are on-going under Euraxle Project (handling of painted/non painted axles, need for Harmonization of NDT techniques: deliverables expected in 2014).

#### Traceability

ECCM deals also with harmonized traceability criteria: EVIC logging and European Wheelset Traceability (EWT).

These 2 requirements are further developed under the EWT and EVIC chapters. ECCM defines also what has to be done in case of lack of traceability in order to ensure a minimum level of available data.

Continued high performance operation

ECCM defines the limit for high performance operation for types A (I, II, III(1) and III(2)) and type B. For each scope of use a limited mileage and corresponding maintenance actions are associated.

Example: Type A-I cannot be operated at a load higher than 20t. Type A-III(2) operated between 20,6t and 21t will be checked by NDT and limited to 400,000 km (compared to 600,000 km in normal maintenance plan)

#### Migration of the JSG rules

The content of the European Common Criteria for Maintenance (ECCM), developed by the Sector, will be implemented by the CEN as European standardization body via the migration of the JSG proposals into the EN standards, in particular EN 15313.

EN15313 revision is on-going. The Maintenance criteria will be included and new adopted version scheduled to be published as enquiry in 2012.



#### Conclusions

ECCM is the results of a large study and a common effort within the Sector. Former maintenance rules were defined on national level. With the development of the ECCM program the maintenance criteria have been harmonized from the top and increase the trust in the European maintenance system.

### 3.4. Long-term measure: The European wheelset Traceability Catalogue (EWT) for freight wagon axles

The European Wheelset Traceability (EWT) system, worked out by the Joint Sector Group, was agreed with the European Railway Agency (ERA) and the National Safety Authorities (NSAs) after the Task Force meeting on 22<sup>nd</sup> June 2010.

The purpose of the EWT System is to record safety related wheelset maintenance data, based on harmonized parameters all across Europe, to further improve and harmonize traceability requirements, as well as to reduce the time for analysis in case of incidents.

The data to be collected, the timeframes, as well as explanations and further information are laid down in the EWT Implementation Guide, available in Annex 3.4.A.

The EWT Implementation Letter and the EWT Implementation guide was submitted via the national EWT bodies in the Member states and Switzerland. As a consequence the keepers' respectively the ECM's have invested lot of resources (time, people and money) to obtain and gather the data defined as requirements and written down in the EWT.

To verify the implementation status of the EWT in Europe, the Joint Sector Group was asked by the NSA's to carry out a monitoring system and to report on the results. Two surveys have been conducted by the JSG and showed, that the level of Traceability is very high. Furthermore, between the first and the second survey the JSG showed a further improvement of the Traceability Level within the whole railway Sector linked to rail freight wagons and components, in particular regarding the axle item. The details and further information on both surveys can be found in the presentations hold in the frame of the different ERA TaskForce meetings and are available on the <u>www.jsgrail.eu</u> homepage and in ANNEX 3.4.B.

Regarding the implementation of the EWT, the JSG is convinced that, based on the given data in both surveys, the Keeper respectively ECM's took their responsibility and the Sector improved its ability to trace axle data and axle events.

The high level of traceability shown in the surveys is based on a self-obligation of the Sector. However, in order to create a legal basis for the EWT requirements all over Europe, the details are implemented in the European Standards, EN 15313. The implementation itself is now finalized and was supported by the work of the CEN WG11-members. Further steps linked to the publication of the new EN standard will take place in accordance with the CEN-procedure.



Moreover, according to the requirements of the new ECM regulation 445/2011/EC, EWT is an integrated part of the ECM certification process and subject to the periodical control of the certification bodies.

#### 4. Conclusions

Although an accident as in Viareggio is always a shock for the Sector and the public, it should not be forgotten that the transportation of goods on rail is multiple times safer than the transportation on road. It is however commonly accepted that after such an accident, measures have to be identified and taken in order to reduce the likelihood of similar incident, starting from the examination of the conditions leading to the event.

The measures identified in the discussions within the Sector and with the members of the TF Viareggio are described in this document and were implemented by the JSG on a pan-European base. Those measures are as such a genuine response to the overall goal of reducing safety risks.

The EVIC campaign as a visual examination of around 2 million axles mounted on freight wagons around Europe will continue till April 2016. However, the analyses of the current EVIC tracing reports show already a step-by-step improvement of the overall axle surface state. In addition, it has to be considered that EVIC implies a removing out of service of the axles with worst surface condition impacting also positively the general state. The NDT examinations following these removals (carried out in anticipation to standard maintenance intervals) complete the list of actions performed for the safety of the components. The final and stabilized effect of EVIC, considering also the effect of harmonized maintenance criteria (ECCM) and their implementation in the relevant EN standards, will be a general higher quality level of the surface condition of the axles in service.

It has to be also clearly understood that, not only during the transition period, but also after , it is technically impossible to guarantee that such an accident will never happen again.

On the other hand, the risk analysis of the Sector, as well as published Annual Safety Reports and other studies on safety clearly show that accidents caused by broken axles, as it happened in Viareggio, are not the main safety relevant issue in terms of preventing and mitigating freight train derailments. Most of the derailments are caused by infrastructure defects or mistakes during operation.

Looking at the limited resources of the Sector and of the authorities, the JSG, supported by the stakeholder's associations recommends therefore:

- to focus the efforts on additional improvements on the other causes of accident and derailments;
- to follow the implementation of the measures via the ECM activities, in particular in the unlikely event of similar accident;
- to discuss any safety relevant issue on a European level before issuing national measures and to make use of the ERA structures since any decision impacts the ability of stakeholders to operate freight trains and to have as a first and immediate effect a modal shift to the road with an impact on the global safety level of the European transportation system.



Coming at an end of its task, the Joint Sector Group has released a number of very important measures contributing to globally increase the safety level of freight in Europe and to build grounds for a harmonized Wheelset Axle Maintenance Plan. The coherence and consistency of the system taking into account the work of the Task Force is based on the technical standards EN13103:2009+A2:2012 for new build axles and EN15313pr for axles' maintenance.

The successful results of the Joint Sector Group activities under the Task Force Freight Wagon Maintenance show an appropriate way to find common solution for discussing technical solutions to safety relevant issues and as such may strengthen the acceptance of rail freight traffic around Europe.

CER Dirk Müller Expert

ERFA Dr. Johannes Nicolin Expert

UIP Mr Gilles Peterhans JSG coordinator

UIP

Dr. Eckart Lehmann

President

UIRR Mr Eric Feyen Expert

UIRR Mr Martin Burkhardt Secretary General

UNIFE Mr Francesco Lombardo ERWA TC Chairman

UNIFE Mr. Massimo Marianeschi General Manager

CER Dr. Libor Lochman Executive Director

ERFA

Mr Pierre Tonon Secretary General



ANNEX 2: FMEA/FTA analysis

### **Results and details for JSG FMEA and FTA Analysis**

Joint Sector Group for ERA Task Force on wagon/axle maintenance



#### Fault Tree Result (2nd level): Percentage of events for derailments due to wheelset damages





### Severity

| Source: | based on EN 60812, Analysis techniques for system reliability –  |
|---------|------------------------------------------------------------------|
|         | Procedure for failure mode and effects analysis (FMEA) [11/2006] |

| Rank | Impact                      | Criteria                                                                                                                                             | Example                       |
|------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1    | no impact                   | No recognizable effect.                                                                                                                              |                               |
| 4    | very low                    | Error is noticed by customers. Due to the failure there is an im-<br>pact on the quality of rolling stock and on the infrastructure in long<br>term. |                               |
| 6    | moderate                    | Error is noticed by most customers. Due to the failure there is an impact on the quality of rolling stock and on the infrastructure in short term.   |                               |
| 8    | very high                   | Risk of some injured people and servere impact on environment.<br>There is a high impact on operation.                                               |                               |
| 10   | unsafe without warn-<br>ing | Risk of many dead and numerous injured people: The impact on<br>environment is catastrophic. Operation on the line is closed for<br>weeks.           | derailment ("Via-<br>reggio") |



| 153                        |                                             |                                |                      |                                          | Risk Priority Number (RPN) limit for inten-<br>sive proovings: |   |                   |  |                                              |  |     |                            |  |  |
|----------------------------|---------------------------------------------|--------------------------------|----------------------|------------------------------------------|----------------------------------------------------------------|---|-------------------|--|----------------------------------------------|--|-----|----------------------------|--|--|
| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next | Failure mode         | Root cause                               | Severity                                                       |   | Detectability     |  | Severity Detectability Frequency             |  | ,   | Risk<br>priority<br>number |  |  |
| 311<br>axle                | derailment                                  | axle crack                     | broken abut-<br>ment | corroded axle (or<br>surface roughness)  | unsafe wit-<br>hout warning                                    | 0 | low               |  | low:<br>relative few<br>failures             |  | 240 |                            |  |  |
| 311<br>axle                | derailment                                  | axle crack                     | broken abut-<br>ment | hot axle box                             | unsafe wit-<br>hout warning                                    | 0 | little            |  | moderate:<br>sometimes there<br>are failures |  | 480 |                            |  |  |
| 311<br>axle                | derailment                                  | axle crack                     | broken abut-<br>ment | mechanical damage                        | unsafe wit-<br>hout warning                                    | 0 | low               |  | low:<br>relative few<br>failures             |  | 240 |                            |  |  |
| 311<br>axle                | derailment                                  | axle crack                     | broken abut-<br>ment | not reported de-<br>railment in the past | unsafe wit-<br>hout warning                                    | 0 | moderate<br>high  |  | moderate:<br>sometimes there<br>are failures |  | 240 |                            |  |  |
| 311<br>axle                | derailment                                  | axle crack                     | broken abut-<br>ment | overloading by dy-<br>namic effects      | unsafe wit-<br>hout warning                                    | 0 | low               |  | moderate:<br>sometimes there<br>are failures |  | 360 |                            |  |  |
| 311<br>axle                | derailment                                  | axle crack                     | broken abut-<br>ment | overloading of the<br>wagon              | unsafe wit-<br>hout warning                                    | 0 | low               |  | low:<br>relative few<br>failures             |  | 240 |                            |  |  |
| 311<br>axle                | derailment                                  | axle crack                     | broken abut-<br>ment | quality of produc-<br>tion - geometrical | unsafe wit-<br>hout warning                                    | 0 | nearly<br>certain |  | little:<br>failure is probab-<br>le          |  | 10  |                            |  |  |
| 311<br>axle                | derailment                                  | axle crack                     | broken abut-<br>ment | quality of produc-<br>tion - material    | unsafe wit-<br>hout warning                                    | 0 | nearly<br>certain |  | little:<br>failure is probab-<br>le          |  | 10  |                            |  |  |
| 311<br>axle                | derailment                                  | axle crack                     | broken journal       | corroded axle (or<br>surface roughness)  | unsafe wit-<br>hout warning                                    | 0 | low               |  | little:<br>failure is probab-<br>le          |  | 60  |                            |  |  |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next | Failure mode   | Root cause                               |   | Severity                    | Detectability |                   | Frequency |                                              | Risk<br>priority<br>number |     |
|----------------------------|---------------------------------------------|--------------------------------|----------------|------------------------------------------|---|-----------------------------|---------------|-------------------|-----------|----------------------------------------------|----------------------------|-----|
| 311<br>axle                | derailment                                  | axle crack                     | broken journal | hot axle box                             | h | unsafe wit-<br>nout warning | 0             | little            |           | moderate:<br>sometimes there<br>are failures |                            | 480 |
| 311<br>axle                | derailment                                  | axle crack                     | broken journal | mechanical damage                        | h | unsafe wit-<br>nout warning | 0             | low               |           | little:<br>failure is probab-<br>le          |                            | 60  |
| 311<br>axle                | derailment                                  | axle crack                     | broken journal | not reported de-<br>railment in the past | h | unsafe wit-<br>nout warning | 0             | moderate<br>high  |           | moderate:<br>sometimes there<br>are failures |                            | 240 |
| 311<br>axle                | derailment                                  | axle crack                     | broken journal | overloading by dy-<br>namic effects      | h | unsafe wit-<br>nout warning | 0             | low               |           | moderate:<br>sometimes there<br>are failures |                            | 360 |
| 311<br>axle                | derailment                                  | axle crack                     | broken journal | overloading of the wagon                 | h | unsafe wit-<br>nout warning | 0             | low               |           | low:<br>relative few<br>failures             |                            | 240 |
| 311<br>axle                | derailment                                  | axle crack                     | broken journal | quality of produc-<br>tion - geometrical | h | unsafe wit-<br>nout warning | 0             | nearly<br>certain |           | little:<br>failure is probab-<br>le          |                            | 10  |
| 311<br>axle                | derailment                                  | axle crack                     | broken journal | quality of produc-<br>tion - material    | h | unsafe wit-<br>nout warning | 0             | nearly<br>certain |           | little:<br>failure is probab-<br>le          |                            | 10  |
| 311<br>axle                | derailment                                  | axle crack                     | broken shaft   | corroded axle (or<br>surface roughness)  | h | unsafe wit-<br>nout warning | 0             | moderate<br>high  |           | low:<br>relative few<br>failures             |                            | 160 |
| 311<br>axle                | derailment                                  | axle crack                     | broken shaft   | mechanical damage                        | h | unsafe wit-<br>nout warning | 0             | moderate<br>high  |           | moderate:<br>sometimes there<br>are failures |                            | 240 |
| 311<br>axle                | derailment                                  | axle crack                     | broken shaft   | not reported de-<br>railment in the past | h | unsafe wit-<br>nout warning | 0             | moderate<br>high  |           | moderate:<br>sometimes there<br>are failures |                            | 240 |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next | Failure mode         | Root cause                                       | Severity                    | Detectability |                   | ility Frequency |                                              | Risk<br>priority<br>number |     |
|----------------------------|---------------------------------------------|--------------------------------|----------------------|--------------------------------------------------|-----------------------------|---------------|-------------------|-----------------|----------------------------------------------|----------------------------|-----|
| 311<br>axle                | derailment                                  | axle crack                     | broken shaft         | overloading by dy-<br>namic effects              | unsafe wit-<br>hout warning | 0             | low               |                 | moderate:<br>sometimes there<br>are failures |                            | 360 |
| 311<br>axle                | derailment                                  | axle crack                     | broken shaft         | overloading of the wagon                         | unsafe wit-<br>hout warning | 0             | low               |                 | low:<br>relative few<br>failures             |                            | 240 |
| 311<br>axle                | derailment                                  | axle crack                     | broken shaft         | quality of produc-<br>tion - geometrical         | unsafe wit-<br>hout warning | 0             | nearly<br>certain |                 | little:<br>failure is probab-<br>le          |                            | 10  |
| 311<br>axle                | derailment                                  | axle crack                     | broken shaft         | quality of produc-<br>tion - material            | unsafe wit-<br>hout warning | 0             | nearly<br>certain |                 | little:<br>failure is probab-<br>le          |                            | 10  |
| 311<br>axle                | derailment                                  | axle crack                     | broken wheel<br>seat | mechanical damage<br>(mounting /<br>dismounting) | unsafe wit-<br>hout warning | 0             | low               |                 | little:<br>failure is probab-<br>le          |                            | 60  |
| 311<br>axle                | derailment                                  | axle crack                     | broken wheel<br>seat | not reported de-<br>railment in the past         | unsafe wit-<br>hout warning | 0             | moderate<br>high  |                 | moderate:<br>sometimes there<br>are failures |                            | 240 |
| 311<br>axle                | derailment                                  | axle crack                     | broken wheel<br>seat | overloading by dy-<br>namic effects              | unsafe wit-<br>hout warning | 0             | low               |                 | moderate:<br>sometimes there<br>are failures |                            | 360 |
| 311<br>axle                | derailment                                  | axle crack                     | broken wheel<br>seat | overloading of the wagon                         | unsafe wit-<br>hout warning | 0             | low               |                 | moderate:<br>sometimes there<br>are failures |                            | 360 |
| 311<br>axle                | derailment                                  | axle crack                     | broken wheel<br>seat | quality of produc-<br>tion - geometrical         | unsafe wit-<br>hout warning | 0             | nearly<br>certain |                 | little:<br>failure is probab-<br>le          |                            | 10  |
| 311<br>axle                | derailment                                  | axle crack                     | broken wheel<br>seat | quality of produc-<br>tion - material            | unsafe wit-<br>hout warning | 0             | nearly<br>certain |                 | little:<br>failure is probab-<br>le          |                            | 10  |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next | Failure mode  | Root cause                               | Severity                    |   | Detectability    | Frequency                           |  | Risk<br>priority<br>number |
|----------------------------|---------------------------------------------|--------------------------------|---------------|------------------------------------------|-----------------------------|---|------------------|-------------------------------------|--|----------------------------|
| 311<br>axle                | derailment                                  | axle damages<br>without crack  | deformed axle | not reported de-<br>railment in the past | unsafe wit-<br>hout warning | 0 | moderate<br>high | low:<br>relative few<br>failures    |  | 160                        |
| 311<br>axle                | derailment                                  | axle damages<br>without crack  | deformed axle | overloading of the wagon                 | unsafe wit-<br>hout warning | 0 | moderate<br>high | low:<br>relative few<br>failures    |  | 160                        |
| 311<br>axle                | derailment                                  | broken abut-<br>ment (axle)    | hot axle box  | broken cage                              | unsafe wit-<br>hout warning | 0 | low              | low:<br>relative few<br>failures    |  | 240                        |
| 311<br>axle                | derailment                                  | broken abut-<br>ment (axle)    | hot axle box  | broken inner ring                        | unsafe wit-<br>hout warning | 0 | low              | little:<br>failure is probab-<br>le |  | 60                         |
| 311<br>axle                | derailment                                  | broken abut-<br>ment (axle)    | hot axle box  | broken outer ring                        | unsafe wit-<br>hout warning | 0 | low              | little:<br>failure is probab-<br>le |  | 60                         |
| 311<br>axle                | derailment                                  | broken abut-<br>ment (axle)    | hot axle box  | corrosion of bearing                     | unsafe wit-<br>hout warning | 0 | low              | low:<br>relative few<br>failures    |  | 240                        |
| 311<br>axle                | derailment                                  | broken abut-<br>ment (axle)    | hot axle box  | loose inner ring                         | unsafe wit-<br>hout warning | 0 | low              | low:<br>relative few<br>failures    |  | 240                        |
| 311<br>axle                | derailment                                  | broken abut-<br>ment (axle)    | hot axle box  | spalling bearing                         | unsafe wit-<br>hout warning | 0 | low              | low:<br>relative few<br>failures    |  | 240                        |
| 311<br>axle                | derailment                                  | broken abut-<br>ment (axle)    | hot axle box  | wrong axle box as-<br>sembly             | unsafe wit-<br>hout warning | 0 | moderate<br>high | low:<br>relative few<br>failures    |  | 160                        |
| 311<br>axle                | derailment                                  | broken abut-<br>ment (axle)    | hot axle box  | wrong bearing as-<br>sembly              | unsafe wit-<br>hout warning | 0 | low              | low:<br>relative few<br>failures    |  | 240                        |
| 311<br>axle                | derailment                                  | broken abut-<br>ment (axle)    | hot axle box  | wrong clearance                          | unsafe wit-<br>hout warning | 0 | low              | low:<br>relative few<br>failures    |  | 240                        |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next                     | Failure mode                   | Root cause                                                                              | Severity                    |   | Detectability    |  | Severity Detectability Frequency    |     | Frequency | Risk<br>priority<br>number |
|----------------------------|---------------------------------------------|----------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|---|------------------|--|-------------------------------------|-----|-----------|----------------------------|
| 311<br>axle                | derailment                                  | broken journal<br>(axle)                           | hot axle box                   | broken cage                                                                             | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures    | 240 |           |                            |
| 311<br>axle                | derailment                                  | broken journal<br>(axle)                           | hot axle box                   | broken inner ring                                                                       | unsafe wit-<br>hout warning | 0 | low              |  | little:<br>failure is probab-<br>le | 60  |           |                            |
| 311<br>axle                | derailment                                  | broken journal<br>(axle)                           | hot axle box                   | broken outer ring                                                                       | unsafe wit-<br>hout warning | 0 | low              |  | little:<br>failure is probab-<br>le | 60  |           |                            |
| 311<br>axle                | derailment                                  | broken journal<br>(axle)                           | hot axle box                   | corrosion of bearing                                                                    | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures    | 240 |           |                            |
| 311<br>axle                | derailment                                  | broken journal<br>(axle)                           | hot axle box                   | loose inner ring                                                                        | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures    | 240 |           |                            |
| 311<br>axle                | derailment                                  | broken journal<br>(axle)                           | hot axle box                   | spalling bearing                                                                        | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures    | 240 |           |                            |
| 311<br>axle                | derailment                                  | broken journal<br>(axle)                           | hot axle box                   | wrong axle box as-<br>sembly                                                            | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | low:<br>relative few<br>failures    | 160 |           |                            |
| 311<br>axle                | derailment                                  | broken journal<br>(axle)                           | hot axle box                   | wrong bearing as-<br>sembly                                                             | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures    | 240 |           |                            |
| 311<br>axle                | derailment                                  | broken journal<br>(axle)                           | hot axle box                   | wrong clearance                                                                         | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures    | 240 |           |                            |
| 3121<br>Solid wheel        | derailment                                  | bearing dam-<br>age, damage of other<br>components | wheel out of<br>round          | quality of produc-<br>tion - process (e.g. geo-<br>metrical reason / heat<br>treatment) | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures    | 240 |           |                            |
| 3121<br>Solid wheel        | derailment                                  | broken solid<br>wheel                              | overloading by dynamic effects | other effects of dy-<br>namic overloading                                               | unsafe wit-<br>hout warning | 0 | low              |  | low:relative few<br>failures        | 240 |           |                            |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next       | Failure mode                                                                             | Root cause                                                                              | Severity                    |   | Detectability    |  | Frequency                                    |  | Risk<br>priority<br>number |  |
|----------------------------|---------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|---|------------------|--|----------------------------------------------|--|----------------------------|--|
| 3121<br>Solid wheel        | derailment                                  | broken solid<br>wheel                | overloading by<br>dynamic effects                                                        | wrong tread profile                                                                     | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | low:<br>relative few<br>failures             |  | 160                        |  |
| 3121<br>Solid wheel        | derailment                                  | broken wheel<br>center (tyred wheel) | overloading of the wagon                                                                 | other effects of dy-<br>namic overloading                                               | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures             |  | 240                        |  |
| 3121<br>Solid wheel        | derailment                                  | broken wheel<br>center (tyred wheel) | overloading of the wagon                                                                 | wrong tread profile                                                                     | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | low:<br>relative few<br>failures             |  | 160                        |  |
| 3121<br>Solid wheel        | derailment                                  | deformed<br>wheel                    | mechanical de-<br>formation                                                              | overloading of the<br>wagon                                                             | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures             |  | 240                        |  |
| 3121<br>Solid wheel        | derailment                                  | deformed<br>wheel                    | mechanical de-<br>formation                                                              | previous unknown<br>derailments                                                         | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | moderate:<br>sometimes there<br>are failures |  | 240                        |  |
| 3121<br>Solid wheel        | derailment                                  | deformed<br>wheel                    | thermomechni-<br>cal deformation                                                         | exceeding brake en-<br>ergy input (e.g. misuse of<br>park brake / brake inci-<br>dente) | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | moderate:<br>sometimes there<br>are failures |  | 240                        |  |
| 3121<br>Solid wheel        | derailment                                  | flat wheel, tread<br>damage          | exceeding<br>brake energy input<br>(e.g. misuse of park<br>brake / brake inci-<br>dente) | malfunction of the<br>brake (e.g. blocking<br>wheel)                                    | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | moderate:<br>sometimes there<br>are failures |  | 240                        |  |
| 3121<br>Solid wheel        | derailment                                  | increase dyna-<br>mic forces         | wrong tread<br>profile                                                                   | tread profile dama-<br>ge                                                               | unsafe wit-<br>hout warning | 0 | low              |  | moderate:<br>sometimes there<br>are failures |  | 360                        |  |
| 3121<br>Solid wheel        | derailment                                  | increase dyna-<br>mic forces         | wrong tread<br>profile                                                                   | wheel out of round                                                                      | unsafe wit-<br>hout warning | 0 | low              |  | moderate:<br>sometimes there<br>are failures |  | 360                        |  |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next     | Failure mode                 | Root cause                                                          | Severity                    |   | Detectability    |  | Frequency                                    |  | Risk<br>priority<br>number |
|----------------------------|---------------------------------------------|------------------------------------|------------------------------|---------------------------------------------------------------------|-----------------------------|---|------------------|--|----------------------------------------------|--|----------------------------|
| 3121<br>Solid wheel        | derailment                                  | loose wheel                        | loose wheel                  | too little pressfit                                                 | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures             |  | 240                        |
| 3121<br>Solid wheel        | derailment                                  | non conform<br>wheel tread profile | extraordinary<br>profil wear | prospective wear by normal operation                                | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | low:<br>relative few<br>failures             |  | 160                        |
| 3121<br>Solid wheel        | derailment                                  | non conform<br>wheel tread profile | normal profil<br>wear        | prospective wear by normal operation                                | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | moderate:<br>sometimes there<br>are failures |  | 240                        |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                        | broken solid<br>wheel        | corroded wheel (or surface roughness)                               | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | low:<br>relative few<br>failures             |  | 160                        |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                        | broken solid<br>wheel        | mechanical damage                                                   | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | low:<br>relative few<br>failures             |  | 160                        |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                        | broken solid<br>wheel        | overloading by dy-<br>namic effects                                 | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures             |  | 240                        |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                        | broken solid<br>wheel        | overloading of the wagon                                            | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures             |  | 240                        |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                        | broken solid<br>wheel        | quality of produc-<br>tion - material                               | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | little:<br>failure is probab-<br>le          |  | 40                         |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                        | broken solid<br>wheel        | quality of produc-<br>tion - process (e.g. geo-<br>metrical reason) | unsafe wit-<br>hout warning | 0 | low              |  | low:<br>relative few<br>failures             |  | 240                        |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                        | broken wheel<br>center       | corroded wheel (or<br>surface roughness)                            | unsafe wit-<br>hout warning | 0 | moderate<br>high |  | low:<br>relative few<br>failures             |  | 160                        |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                        | broken wheel<br>center       | mechanical damage                                                   | unsafe wit-<br>hout warning | 0 | low              |  | low:relative few<br>failures                 |  | 240                        |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next | Failure mode               | Root cause                                                                              | Severity                    | Detectability |                  | Frequency | Risk<br>priority<br>number                   |  |     |
|----------------------------|---------------------------------------------|--------------------------------|----------------------------|-----------------------------------------------------------------------------------------|-----------------------------|---------------|------------------|-----------|----------------------------------------------|--|-----|
| 3121<br>Solid wheel        | derailment                                  | wheel crack                    | broken wheel<br>center     | overloading by dy-<br>namic effects                                                     | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures             |  | 240 |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                    | broken wheel<br>center     | overloading of the wagon                                                                | unsafe wit-<br>hout warning | 0             | little           |           | moderate:<br>sometimes there<br>are failures |  | 480 |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                    | broken wheel<br>center     | quality of produc-<br>tion - geometrical                                                | unsafe wit-<br>hout warning | 0             | moderate<br>high |           | little:<br>failure is probab-<br>le          |  | 40  |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                    | broken wheel<br>center     | quality of produc-<br>tion - material                                                   | unsafe wit-<br>hout warning | 0             | moderate<br>high |           | little:<br>failure is probab-<br>le          |  | 40  |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                    | loose wheel                | loose wheel or loose<br>wheel centre                                                    | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures             |  | 240 |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                    | thermomechni-<br>cal crack | exceeding brake en-<br>ergy input (e.g. misuse of<br>park brake / brake inci-<br>dente) | unsafe wit-<br>hout warning | 0             | moderate<br>high |           | moderate:<br>sometimes there<br>are failures |  | 240 |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                    | thermomechni-<br>cal crack | flanging brake<br>blocks                                                                | unsafe wit-<br>hout warning | 0             | moderate<br>high |           | low:<br>relative few<br>failures             |  | 160 |
| 3121<br>Solid wheel        | derailment                                  | wheel crack                    | wrong tread<br>profile     | tread profile dama-<br>ge                                                               | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures             |  | 240 |
| 3121<br>Solid wheel        | increase dy-<br>namic forces                | wrong tread<br>profile         | flat wheel                 | breaking incident                                                                       | very low                    |               | low              |           | moderate:<br>sometimes there<br>are failures |  | 144 |
| 3121<br>Solid wheel        | increase dy-<br>namic forces                | wrong tread<br>profile         | tread profile<br>damage    | overloading by dy-<br>namic effects                                                     | very low                    |               | low              |           | moderate:<br>sometimes there<br>are failures |  | 144 |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next                     | Failure mode            | Root cause                                                                              | Severity |  | Detectability    |  | Frequency                                    | Risk<br>priority<br>number |     |
|----------------------------|---------------------------------------------|----------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------|----------|--|------------------|--|----------------------------------------------|----------------------------|-----|
| 3121<br>Solid wheel        | increase dy-<br>namic forces                | wrong tread<br>profile                             | tread profile<br>damage | overloading of the<br>wagon                                                             | very low |  | low              |  | low:<br>relative few<br>failures             |                            | 96  |
| 3121<br>Solid wheel        | increase dy-<br>namic forces                | wrong tread<br>profile                             | tread profile<br>damage | quality of produc-<br>tion - geometrical                                                | very low |  | moderate<br>high |  | little:<br>failure is probab-<br>le          |                            | 16  |
| 3121<br>Solid wheel        | increase dy-<br>namic forces                | wrong tread<br>profile                             | tread profile<br>damage | quality of produc-<br>tion - material                                                   | very low |  | moderate<br>high |  | little:<br>failure is probab-<br>le          |                            | 16  |
| 3121<br>Solid wheel        | increase dy-<br>namic forces                | wrong tread<br>profile                             | tread profile<br>damage | wear                                                                                    | very low |  | moderate<br>high |  | moderate:<br>sometimes there<br>are failures |                            | 96  |
| 3121<br>Solid wheel        | increase dy-<br>namic forces                | wrong tread<br>profile                             | wheel out of<br>round   | overloading by dy-<br>namic effects                                                     | very low |  | low              |  | moderate:<br>sometimes there<br>are failures |                            | 144 |
| 3121<br>Solid wheel        | increase dy-<br>namic forces                | wrong tread<br>profile                             | wheel out of<br>round   | quality of produc-<br>tion - geometrical                                                | very low |  | moderate<br>high |  | low:<br>relative few<br>failures             |                            | 64  |
| 3121<br>Solid wheel        | increase dy-<br>namic forces                | wrong tread<br>profile                             | wheel out of<br>round   | quality of produc-<br>tion - material                                                   | very low |  | moderate<br>high |  | little:<br>failure is probab-<br>le          |                            | 16  |
| 3121<br>Solid wheel        | wheel crack                                 | axle shaft and /<br>or bearing damage              | loose wheel             | exceeding loading<br>conditions / excessive<br>transverse load                          | moderate |  | low              |  | little:<br>failure is probab-<br>le          |                            | 36  |
| 3121<br>Solid wheel        | wheel crack                                 | axle shaft and /<br>or bearing damage              | loose wheel             | quality of produc-<br>tion - process (e.g. geo-<br>metrical reason / wrong<br>mounting) | moderate |  | low              |  | low:<br>relative few<br>failures             |                            | 144 |
| 3121<br>Solid wheel        | wheel crack                                 | bearing dam-<br>age, damage of other<br>components | dynammic<br>overloading | flat wheel, tread<br>damage                                                             | moderate |  | moderate<br>high |  | moderate:<br>sometimes there<br>are failures |                            | 144 |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next                       | Failure mode                                       | Root cause                                                                              | Severity |                             | Severity |                  | Severity |                                              | Severity |     | у | Frequency | Frequency prio<br>num |  |  |  |
|----------------------------|---------------------------------------------|------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|----------|-----------------------------|----------|------------------|----------|----------------------------------------------|----------|-----|---|-----------|-----------------------|--|--|--|
| 3121<br>Solid wheel        | wheel crack                                 | bearing dam-<br>age, damage of other<br>components   | flat wheel,<br>tread damage                        | exceeding brake en-<br>ergy input (e.g. misuse of<br>park brake / brake inci-<br>dente) |          | moderate                    |          | moderate<br>high |          | moderate:<br>sometimes there<br>are failures |          | 144 |   |           |                       |  |  |  |
| 3121<br>Solid wheel        | wheel crack                                 | bearing dam-<br>age, damage of other<br>components   | flat wheel,<br>tread damage                        | overloading by dy-<br>namic effects                                                     |          | moderate                    |          | low              |          | moderate:<br>sometimes there<br>are failures |          | 216 |   |           |                       |  |  |  |
| 3121<br>Solid wheel        | wheel crack                                 | bearing dam-<br>age, damage of other<br>components   | flat wheel,<br>tread damage                        | quality of produc-<br>tion - material                                                   |          | moderate                    |          | low              |          | little:<br>failure is probab-<br>le          |          | 36  |   |           |                       |  |  |  |
| 3121<br>Solid wheel        | wheel crack                                 | bearing dam-<br>age, damage of other<br>components   | wheel out of<br>round                              | malfunction of the<br>brake (e.g. blocking<br>wheel)                                    |          | moderate                    |          | moderate<br>high |          | moderate:<br>sometimes there<br>are failures |          | 144 |   |           |                       |  |  |  |
| 3121<br>Solid wheel        | shock                                       | bearing damage                                       | flat wheel,<br>tread damage                        |                                                                                         |          | moderate                    |          | low              |          | moderate:<br>sometimes there<br>are failures |          | 216 |   |           |                       |  |  |  |
| 3122<br>Tyred<br>wheel     | Note: For Tyre<br>Failures which            | d wheels only the failur<br>are identical to solid w | es typical for tyred wh<br>heels are assessed alre | nels are listed.<br>ady under "3121 Solid whee                                          | el".     |                             |          |                  |          |                                              |          |     |   |           |                       |  |  |  |
| 3122<br>Tyred<br>wheel     | derailment                                  | broken tyre                                          | fatique crack                                      | mechanical damage                                                                       |          | unsafe<br>without warning   | 0        | low              |          | moderate:<br>sometimes there<br>are failures |          | 360 |   |           |                       |  |  |  |
| 3122<br>Tyred<br>wheel     | derailment                                  | broken tyre                                          | fatique crack                                      | overloading by dy-<br>namic effects                                                     |          | unsafe wit-<br>hout warning | 0        | low              |          | moderate:<br>sometimes there<br>are failures |          | 360 |   |           |                       |  |  |  |
| 3122<br>Tyred<br>wheel     | derailment                                  | broken tyre                                          | fatique crack                                      | quality of produc-<br>tion (e.g. material,<br>mounting)                                 |          | unsafe wit-<br>hout warning | 0        | low              |          | low:<br>relative few<br>failures             |          | 240 |   |           |                       |  |  |  |
| 3122 Tyred wheel           | derailment                                  | broken tyre                                          | overloading by<br>dynamic effects                  | wrong tread profile                                                                     |          | unsafe wit-<br>hout warning | 0        | low              |          | low:relative few<br>failures                 |          | 240 |   |           |                       |  |  |  |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode resulting next | Failure mode                      | Root cause                                                                              | Severity                    | Detectability |                  | Frequency |                                              | Risk<br>priority<br>number |     |
|----------------------------|---------------------------------------------|-----------------------------|-----------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|---------------|------------------|-----------|----------------------------------------------|----------------------------|-----|
| 3122<br>Tyred<br>wheel     | derailment                                  | broken tyre                 | overloading by<br>dynamic effects | other effects of dy-<br>namic overloading                                               | unsafe wit-<br>hout warning | 0             | low              |           | moderate:<br>sometimes there<br>are failures |                            | 360 |
| 3122<br>Tyred<br>wheel     | derailment                                  | broken tyre                 | thermomechni-<br>cal crack        | exceeding brake en-<br>ergy input (e.g. misuse of<br>park brake / brake inci-<br>dente) | unsafe wit-<br>hout warning | 0             | low              |           | moderate:<br>sometimes there<br>are failures |                            | 360 |
| 3122<br>Tyred<br>wheel     | derailment                                  | loose tyre                  | loose tyre                        | exceeding brake en-<br>ergy input (e.g. misuse of<br>park brake / brake inci-<br>dente) | unsafe wit-<br>hout warning | 0             | low              |           | moderate:<br>sometimes there<br>are failures |                            | 360 |
| 3122<br>Tyred<br>wheel     | derailment                                  | loose tyre                  | loose tyre                        | Tyre thickness is too<br>low / excessive wear                                           | unsafe wit-<br>hout warning | 0             | moderate<br>high |           | low:<br>relative few<br>failures             |                            | 160 |
| 3122<br>Tyred<br>wheel     | derailment                                  | loose tyre                  | loose tyre                        | wrong mounting /<br>too little pressfit                                                 | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures             |                            | 240 |
| 3122<br>Tyred<br>wheel     | derailment                                  | loose wheel                 | loose tyre                        | loose of the spring<br>clip                                                             | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures             |                            | 240 |
| 3122<br>Tyred<br>wheel     | derailment                                  | wheel failed                | broken tyre                       | corrosion in the in-<br>ner diameter of the bore                                        | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures             |                            | 240 |
| 3122<br>Tyred<br>wheel     | derailment                                  | wheel failed                | broken tyre                       | excessive thermal input                                                                 | unsafe wit-<br>hout warning | 0             | little           |           | low:<br>relative few<br>failures             |                            | 320 |
| 3122<br>Tyred<br>wheel     | derailment                                  | wheel failed                | broken tyre                       | mechanical damage                                                                       | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures             |                            | 240 |
| 3122<br>Tyred<br>wheel     | derailment                                  | wheel failed                | broken tyre                       | overloading of the wagon                                                                | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures             |                            | 240 |



| Com-<br>ponent<br>level IV                              | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next | Failure mode                      | Root cause                                            | Severity                    | Detectability |                   | Frequency |                                              | Risk<br>priority<br>number |     |
|---------------------------------------------------------|---------------------------------------------|--------------------------------|-----------------------------------|-------------------------------------------------------|-----------------------------|---------------|-------------------|-----------|----------------------------------------------|----------------------------|-----|
| 3122<br>Tyred<br>wheel                                  | derailment                                  | wheel failed                   | broken tyre                       | overloading by dy-<br>namic effects                   | unsafe wit-<br>hout warning | 0             | low               |           | moderate:<br>sometimes there<br>are failures |                            | 360 |
| 3122<br>Tyred<br>wheel                                  | derailment                                  | wheel failed                   | broken tyre                       | quality of produc-<br>tion - material                 | unsafe wit-<br>hout warning | 0             | moderate<br>high  |           | little:<br>failure is probab-<br>le          |                            | 40  |
| 3122<br>Tyred<br>wheel                                  | derailment                                  | wheel failed                   | broken tyre                       | quality of produc-<br>tion - geometrical              | unsafe wit-<br>hout warning | 0             | moderate<br>high  |           | low:<br>relative few<br>failures             |                            | 160 |
| 3122<br>Tyred<br>wheel                                  | derailment                                  | wheel failed                   | broken tyre                       | excessive wear (tyre thickness too thin)              | unsafe wit-<br>hout warning | 0             | moderate<br>high  |           | low:<br>relative few<br>failures             |                            | 160 |
| 322<br>housing<br>(including<br>rear and<br>frontcover) | derailment                                  | broken housing                 | forced damage                     | damaged by trans-<br>port / collision                 | unsafe wit-<br>hout warning | 0             | nearly<br>certain |           | low:<br>relative few<br>failures             |                            | 40  |
| 322<br>housing<br>(including<br>rear and<br>frontcover) | derailment                                  | broken housing                 | forced damage                     | not reported de-<br>railment in the past              | unsafe wit-<br>hout warning | 0             | low               |           | low:<br>relative few<br>failures             |                            | 240 |
| 322<br>housing<br>(including<br>rear and<br>frontcover) | derailment                                  | broken housing                 | forced damage                     | quality of produc-<br>tion (e.g. wrong mount-<br>ing) | unsafe wit-<br>hout warning | 0             | moderate<br>high  |           | little:<br>failure is probab-<br>le          |                            | 40  |
| 322<br>housing<br>(including<br>rear and<br>frontcover) | derailment                                  | broken housing                 | overloading by<br>dynamic effects |                                                       | unsafe wit-<br>hout warning | 0             | moderate<br>high  |           | low:<br>relative few<br>failures             |                            | 160 |



| Com-<br>ponent<br>level IV                              | Final failure:<br>effect on the<br>wheelset | Failure mode resulting next | Failure mode                          | Root cause                                 | Severity                    |   | Detectability | Frequency                           |  | Risk<br>priority<br>number |
|---------------------------------------------------------|---------------------------------------------|-----------------------------|---------------------------------------|--------------------------------------------|-----------------------------|---|---------------|-------------------------------------|--|----------------------------|
| 322<br>housing<br>(including<br>rear and<br>frontcover) | derailment                                  | broken housing              | overloading of<br>the wagon           |                                            | unsafe wit-<br>hout warning | 0 | low           | low:<br>relative few<br>failures    |  | 240                        |
| 322<br>housing<br>(including<br>rear and<br>frontcover) | derailment                                  | broken housing              | quality of pro-<br>duction - material |                                            | unsafe wit-<br>hout warning | 0 | low           | little:<br>failure is probab-<br>le |  | 60                         |
| 325<br>bearing                                          | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | broken cage                           | geometrical failure                        | unsafe wit-<br>hout warning | 0 | little        | little:<br>failure is probab-<br>le |  | 80                         |
| 325<br>bearing                                          | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | broken cage                           | loose pins                                 | unsafe wit-<br>hout warning | 0 | little        | low:<br>relative few<br>failures    |  | 320                        |
| 325<br>bearing                                          | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | broken cage                           | overloading by dy-<br>namic effects        | unsafe wit-<br>hout warning | 0 | little        | low:<br>relative few<br>failures    |  | 320                        |
| 325<br>bearing                                          | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | broken cage                           | quality of produc-<br>tion (e.g. material) | unsafe wit-<br>hout warning | 0 | little        | little:<br>failure is probab-<br>le |  | 80                         |
| 325<br>bearing                                          | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | broken inner<br>ring                  | overloading by dy-<br>namic effects        | unsafe wit-<br>hout warning | 0 | little        | low:<br>relative few<br>failures    |  | 320                        |
| 325<br>bearing                                          | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | broken inner<br>ring                  | quality of produc-<br>tion (e.g. material) | unsafe wit-<br>hout warning | 0 | little        | little:<br>failure is probab-<br>le |  | 80                         |
| 325<br>bearing                                          | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | broken inner<br>ring                  | utilisation                                | unsafe wit-<br>hout warning | 0 | little        | low:<br>relative few<br>failures    |  | 320                        |
| 325<br>bearing                                          | broken axle (jour-<br>nal / abutment)       | bearing damage              | corrosion inner<br>ring               | high electric current passing bearing      | unsafe wit-<br>hout warning | 0 | little        | little:failure is probable          |  | 80                         |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode resulting next | Failure mode                                                                                       | Root cause                                                         | Severity                    | Detectability |        | Frequency |                                              | Risk<br>priority<br>number |     |
|----------------------------|---------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|---------------|--------|-----------|----------------------------------------------|----------------------------|-----|
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | fractured inner<br>ring                                                                            | wrong mounting                                                     | unsafe wit-<br>hout warning | 0             | little |           | little:<br>failure is probab-<br>le          |                            | 80  |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | spalling bearing                                                                                   | overloading by dy-<br>namic effects                                | unsafe wit-<br>hout warning | 0             | little |           | moderate:<br>sometimes there<br>are failures |                            | 480 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | spalling inner<br>ring/ roller/ outer<br>ring                                                      | quality of produc-<br>tion (e.g. material)                         | unsafe wit-<br>hout warning | 0             | little |           | little:<br>failure is probab-<br>le          |                            | 80  |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | bearing damage              | wear inner<br>ring/ outer ring/<br>roller/ cage/ internal<br>and external spacer/<br>abutment ring | quality of produc-<br>tion (e.g. material)                         | unsafe wit-<br>hout warning | 0             | little |           | little:<br>failure is probab-<br>le          |                            | 80  |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | corrosion of bearing                                                                               | lack of sealing                                                    | unsafe wit-<br>hout warning | 0             | low    |           | low:<br>relative few<br>failures             |                            | 240 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | corrosion of bearing                                                                               | wheelset is out of service for too long time                       | unsafe wit-<br>hout warning | 0             | low    |           | low:<br>relative few<br>failures             |                            | 240 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | loose inner ring                                                                                   | change in the mate-<br>rial due to wrong mount-<br>ing temperature | unsafe wit-<br>hout warning | 0             | little |           | little:<br>failure is probab-<br>le          |                            | 80  |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | loose inner ring                                                                                   | too little pressfit                                                | unsafe wit-<br>hout warning | 0             | little |           | low:<br>relative few<br>failures             |                            | 320 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing                                                                                   | Aging grease                                                       | unsafe wit-<br>hout warning | 0             | little |           | little:<br>failure is probab-<br>le          |                            | 80  |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing                                                                                   | Current leakage                                                    | unsafe wit-<br>hout warning | 0             | low    |           | little:<br>failure is probab-<br>le          |                            | 60  |



| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode resulting next | Failure mode               | Root cause                            | Severity                    | Detectability |                  | Frequency |                                  | Risk<br>priority<br>number |     |
|----------------------------|---------------------------------------------|-----------------------------|----------------------------|---------------------------------------|-----------------------------|---------------|------------------|-----------|----------------------------------|----------------------------|-----|
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing           | Fatigue                               | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures |                            | 240 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing           | Incorrect handling                    | unsafe wit-<br>hout warning | 0             | little           |           | low:<br>relative few<br>failures |                            | 320 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing           | loss of grease                        | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures |                            | 240 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing           | mechanical shock                      | unsafe wit-<br>hout warning | 0             | little           |           | low:<br>relative few<br>failures |                            | 320 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing           | Mounting procedure                    | unsafe wit-<br>hout warning | 0             | little           |           | low:<br>relative few<br>failures |                            | 320 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing           | Suppling process                      | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures |                            | 240 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing           | wrong amount of grease while mounting | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures |                            | 240 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | spalling bearing           | wrong type / quality<br>of grease     | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures |                            | 240 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | wrong axle box<br>assembly | unscrewed cover                       | unsafe wit-<br>hout warning | 0             | moderate<br>high |           | low:<br>relative few<br>failures |                            | 160 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | wrong axle box<br>assembly | wrong dimensioning<br>chain           | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures |                            | 240 |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                | wrong bearing<br>assembly  | unscrewed end cap                     | unsafe wit-<br>hout warning | 0             | low              |           | low:<br>relative few<br>failures |                            | 240 |


| Com-<br>ponent<br>level IV | Final failure:<br>effect on the<br>wheelset | Failure mode<br>resulting next | Failure mode              | Root cause                  | Severity                    |   | Detectability     | / | Frequency                                               | , | Risk<br>priority<br>number |
|----------------------------|---------------------------------------------|--------------------------------|---------------------------|-----------------------------|-----------------------------|---|-------------------|---|---------------------------------------------------------|---|----------------------------|
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | hot axle box                   | wrong bearing<br>assembly | wrong dimensioning<br>chain | unsafe wit-<br>hout warning | 0 | low               |   | little:<br>failure is probab-<br>le                     |   | 60                         |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | spalling bearing               | loss of grease            | lack of sealing             | unsafe wit-<br>hout warning | 0 | nearly<br>certain |   | very high:<br>Failures are<br>nearly not avoid-<br>able | 0 | 100                        |
| 325<br>bearing             | broken axle<br>(journal / abut-<br>ment)    | spalling bearing               | loss of grease            | other reasons               | unsafe wit-<br>hout warning | 0 | low               |   | low:<br>relative few<br>failures                        |   | 240                        |



ANNEX 3.2.A: Result of EVIC tracing April 2010 – April 2012

# **European Visual Inspection Programme for freight wagon axles** (EVIC inspections)

# **European tracing report April 2010 - April 2012**

Joint Sector Group for ERA Task Force on wagon/axle maintenance



# Status of the EVIC Visual Inspections: Total as per April 2012

| Tota  | Total April 2010 - April 2012 |         |         |        |         |            |         |
|-------|-------------------------------|---------|---------|--------|---------|------------|---------|
| 100   | 10tai April 2010 - April 2012 |         |         |        |         | $\sim$     |         |
| /     | Wagons                        | \ '     | '       | '      |         | 1          | NO.     |
|       | checked                       | Other   | EVIC ok | EVIC X | EVICC   | Total axle | Keepers |
| total | 377.056                       | 114 353 | 854.496 | 29.793 | 459.238 | 1.451.715  | 167     |
| D     | 245.413                       | 77.444  | 503.912 | 22.629 | 355.410 | 959.395    | 35      |
| AT    | 21.221                        | 16.262  | 53.326  | 1.698  | 9.070   | 80.356     | 19      |
| F     | 25.108                        | 8.956   | 73.018  | 672    | 8.960   | 91.606     | 31      |
| Н     | 7.421                         | 77      | 25.071  | 22     | 3.871   | 29.041     | 8       |
| IT    | 9.158                         | 1.183   | 15.182  | 497    | 15.142  | 30.563     | 7       |
| BE    | 6.941                         | 0       | 25.350  | 182    | 370     | 21.249     | 10      |
| СН    | 19.160                        | 8.193   | 41.789  | 996    | 21.573  | 72.551     | 15      |
| ES    | 2.801                         | 24      | 5.867   | 1.783  | 3.089   | 10.763     | 2       |
| CZ    | 397                           | 56      | 1.497   | 4      | 29      | 1.586      | 3       |
| PL    | 24.097                        | 347     | 83.453  | 507    | 11.003  | 95.310     | 13      |
| SK    | 8.924                         | 23      | 14.660  | 7      | 19.347  | 34.037     | 4       |
| SI    | 532                           | 479     | 899     | 29     | 810     | 2.217      | 12      |
| PT    | 992                           | 897     | 544     | 569    | 1.585   | 3.595      | 5       |
| LU    | 3.237                         | 24      | 4.543   | 16     | 7.203   | 11.786     | 2       |
| SE    | 1.511                         | 388     | 4.955   | 182    | 1.622   | 7.147      | 1       |
| NL    | 143                           | 0       | 430     | 0      | 154     | 513        | 1       |



X: Remove from service without delayothers: sorted out for other reasons, e.g. reprofilingC: Leave in service until the next EVIC checkok: no defects, leave in service

#### \* 16 countries, 164 wagon keepers

(Feb 2012: 350 T wagons, 1.346 T axles)



# Status of the EVIC Visual Inspections: EU total per April 2012



X: Remove from service without delay C: Leave in service until the next EVIC check others: sorted out for other reasons, e.g. reprofiling ok: no defects, leave in service

Keeper's total EVIC checks (all countries) reported in keeper's registration country



# **Evolution of the EVIC categories findings over 2 years (EU total, per month)**



C: Leave in service until the next EVIC check ok: no defects, leave in service



Evolution of the EVIC categories findings over time (EU total, per month, only X)



X: Remove from service without delay <u>others:</u> sorted out for other reasons, e.g. reprofiling C: Leave in service until the next EVIC check <u>ok:</u> no defects, leave in service



ANNEX 3.2.B: EUROPEAN VISUAL INSPECTION CATALOGUE (EVIC) FOR FREIGHT WAGON AXLES

# EUROPEAN VISUAL INSPECTION CATALOGUE (EVIC) FOR FREIGHT WAGON AXLES

to be applied in light maintenance of freight wagons in workshops

Joint Sector Group for ERA Task Force on wagon/axle maintenance



# DAMAGE CATEGORY

| Painted axles |                                                       |            |  |  |
|---------------|-------------------------------------------------------|------------|--|--|
| 30            | No defects                                            | OK         |  |  |
| 31            | Mechanical damage sharp edged circumferential fluting | X (not ok) |  |  |
| 32            | Mechanical damage smooth edged circumferential groove | X (not ok) |  |  |
| 33            | Mechanical damage sharp edged notching                | X (not ok) |  |  |
| 34            | Mechanical damage cracks                              | X (not ok) |  |  |
| 35            | Surface damage large and heavily corroded areas       | X (not ok) |  |  |
| 36            | Surface damage single, deeply pitted corrosion scars  | X (not ok) |  |  |
| 37            | Coating damage with or without corrosion              | С          |  |  |
|               | Unpainted axles                                       |            |  |  |
| 40            | No defects                                            | OK         |  |  |
| 41            | Mechanical damage sharp edged circumferential fluting | X (not ok) |  |  |
| 42            | Mechanical damage smooth edged circumferential groove | X (not ok) |  |  |
| 43            | Mechanical damage sharp edged notching                | X (not ok) |  |  |
| 44            | Mechanical damage cracks                              | X (not ok) |  |  |
| 45            | Surface damage very heavy, deep and large corrosion   | X (not ok) |  |  |
| 46            | Surface damage single, deeply pitted corrosion scars  | X (not ok) |  |  |
|               | All axles                                             |            |  |  |
| 50            | Abutment area                                         | X (not ok) |  |  |



# **CRITERIA FOR PAINTED AXLES**

| <b>30</b> No or admissible defects found on the axle surface - smooth pitting                                                                                                                                                  |                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Salient information:                                                                                                                                                                                                           |                                       |  |
| Pitting may occur either round the entire perimeter or intermittently and is characterised by smoot tours with no sharp transitions. This type of pitting may arise in the course of maintenance work. T coating is undamaged. | hly rounded con-<br>he anti-corrosion |  |
| Decision:                                                                                                                                                                                                                      |                                       |  |
| Pitted axles whose coating is nevertheless undamaged may remain on the vehicle                                                                                                                                                 |                                       |  |
| Mark 1 at "0k" column in EVIC logging.                                                                                                                                                                                         |                                       |  |
|                                                                                                                                                                                                                                |                                       |  |





| 31 Mechanical damage – sharp edged circumferential flutingP                      |        |  |
|----------------------------------------------------------------------------------|--------|--|
| Salient information:                                                             |        |  |
| Flutes are characterised by sharp edged circumferential sharp-edged transitions. |        |  |
| Mechanical damage to the base material in the form of fluting is inadmissible.   |        |  |
| Decision:                                                                        |        |  |
| Check on the wagon why this damage could have occurred and repair accordingly    |        |  |
| Remove from service according                                                    | Case A |  |
| Mark 1 at "X" column in EVIC logging                                             | X      |  |





| 32 Mechanical damage – smooth edged circumferential grooves P                                                                                                                                     |        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| Salient information:                                                                                                                                                                              |        |  |
| Characterised by smooth transitions in the edges (GCU Annex 9, 1.6.1). Pitting that arises dur-<br>ing operation (caused e.g. by brake lever connectors dragging) involves damaged anti-corrosion |        |  |
|                                                                                                                                                                                                   |        |  |
| Decision:                                                                                                                                                                                         |        |  |
| Check on the wagon why this damage could have occurred and repair accordingly                                                                                                                     |        |  |
| Remove from service                                                                                                                                                                               | Case B |  |
| if there is damage to the base material > 1mm: (acc. GCU)                                                                                                                                         | Case A |  |
| mark 1 at "X" column in EVIC logging                                                                                                                                                              | X      |  |



47/145



| 33 Mechanical damage – sharp edged notchingP                                        |        |  |
|-------------------------------------------------------------------------------------|--------|--|
| Salient information:                                                                |        |  |
| Sharp edged notches occur locally and are characterised by sharp-edged transitions. |        |  |
| Mechanical damage to the base material in the form of notching is inadmissible.     |        |  |
| Decision:                                                                           |        |  |
|                                                                                     |        |  |
| <b>Remove from service (according to GCU criteria)</b>                              | Case A |  |
| mark 1 at "X" column in EVIC logging                                                | X      |  |





| 34 Mechanical damage – cracks                                                              | Painted axles          |  |
|--------------------------------------------------------------------------------------------|------------------------|--|
| Salient information:                                                                       |                        |  |
| Cracks occur locally on the shaft material (not on the painting) and are characterised and | visible by fine lines. |  |
| Mechanical damage to the base material in the form of cracks is inadmissible.              |                        |  |
| Decision:                                                                                  |                        |  |
|                                                                                            |                        |  |
| Remove from service                                                                        | Case A                 |  |
| mark <b>1</b> at <b>"X"</b> column in EVIC logging                                         | X                      |  |

| Pictorial representation: |  |  |  |  |  |
|---------------------------|--|--|--|--|--|
|                           |  |  |  |  |  |



| 35 Surfa   | 35 Surface damage – large and heavily corroded areasPar                                                         |        |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------|--------|--|--|--|
| Salient in | iformation:                                                                                                     |        |  |  |  |
|            |                                                                                                                 |        |  |  |  |
|            | Surface damage to base material in form of large and heavily corroded areas (old corrosion protection) is inadm |        |  |  |  |
| Decision:  |                                                                                                                 |        |  |  |  |
|            |                                                                                                                 |        |  |  |  |
|            | Remove from service                                                                                             | Case B |  |  |  |
|            | mark <b>1</b> at " <mark>X</mark> " column in EVIC logging                                                      | X      |  |  |  |





| 36 Surface damage – single, deeply pitted corrosion scarsPai                                                        |                          |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| Salient information:                                                                                                |                          |  |  |  |
|                                                                                                                     |                          |  |  |  |
| Surface damage to the base material in the form of marked, local corrosion scars (resulting fects) is inadmissible. | g e.g. from chemical ef- |  |  |  |
| Decision:                                                                                                           |                          |  |  |  |
|                                                                                                                     |                          |  |  |  |
| Remove from service                                                                                                 | Case B                   |  |  |  |
| mark 1 at "X" column in EVIC logging                                                                                | X                        |  |  |  |

| Pictorial representation: |  |  |  |  |  |  |
|---------------------------|--|--|--|--|--|--|
|                           |  |  |  |  |  |  |



| <b>37 Coating damage – with or without corrosion</b>     | Painted axles                 |
|----------------------------------------------------------|-------------------------------|
| Salient information:                                     |                               |
| Minor lack of an anti-corrosion coating, whether corros  | ion is involved or not.       |
| Decision:                                                |                               |
| Leave in service acc. case C and/or repair the damage in | n situ on the wheelset Case C |
| mark 1 at "C" column in EVIC logging                     | С                             |





# **CRITERIA FOR UNPAINTED AXLES**

| 40 No defect - admissible surface appearanceU                                                                                                                                           | npainted axles  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Salient information:                                                                                                                                                                    |                 |
| There exist maintenance rules that do not require any anti-corrosion protection. Axles and wheels so such cases and show a thin and uniform layer of rust on their surfaces in service. | ay unpainted in |
| SNCB return on experience proves that application of such an axle maintenance system does not lead to any fatig caused ruptures during service of an axle.                              |                 |
| Decision:                                                                                                                                                                               |                 |
| Deep corrosion is not accepted.                                                                                                                                                         |                 |
| Leave in service wheelset "as new", "very good", "good" and "acceptable"                                                                                                                |                 |
| mark 1 at "ok" column in EVIC logging                                                                                                                                                   | 0               |

| Pictorial representation: |           |      |            |
|---------------------------|-----------|------|------------|
| As new                    | Very good | Good | Acceptable |
|                           |           |      |            |

Version 1.0

53/145



| 41 Mechanical damage – sharp edged circumferential fluting U                     | <b>Inpainted axles</b> |
|----------------------------------------------------------------------------------|------------------------|
| Salient information:                                                             |                        |
| Flutes are characterised by sharp edged circumferential sharp-edged transitions. |                        |
| Mechanical damage to the base material in the form of fluting is inadmissible.   |                        |
| Decision:                                                                        |                        |
| Check on the wagon why this damage could have occurred and repair accordingly    |                        |
| Remove from service according                                                    | Case A                 |
| mark 1 at "X" column in EVIC logging                                             | X                      |



54/145



| 42 Mechanical damage – smooth edged circumferential grooves U                                                                                                                                     | <b>Inpainted axles</b> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Salient information:                                                                                                                                                                              |                        |
| Characterised by smooth transitions in the egdes (GCU Annex 9, 1.6.2). Pitting that arises dur-<br>ing operation (caused e.g. by brake lever connectors dragging) involves damaged anti-corrosion |                        |
|                                                                                                                                                                                                   |                        |
| Decision:                                                                                                                                                                                         |                        |
| Check on the wagon why this damage could have occurred and repair accordingly                                                                                                                     |                        |
| Remove from service                                                                                                                                                                               | Case B                 |
| if there is damage to the base material > 1mm: (acc. GCU)                                                                                                                                         | Case A                 |
| mark <b>1</b> at " <b>X</b> " column in EVIC logging                                                                                                                                              | X                      |



55/145



| 43 Mecha    | anical damage – sharp edged notching U                                              | npainted axles |
|-------------|-------------------------------------------------------------------------------------|----------------|
| Salient inf | formation:                                                                          |                |
|             | Sharp edged notches occur locally and are characterised by sharp-edged transitions. |                |
|             | Mechanical damage to the base material in the form of notching is inadmissible.     |                |
| Decision:   |                                                                                     |                |
|             |                                                                                     |                |
|             | Remove from service (according to GCU criteria)                                     | Case A         |
|             | mark <b>1</b> at " <mark>X</mark> " column in EVIC logging                          | X              |





| 44 Mechanical damage – cracks                                                 | Unpainted axles |
|-------------------------------------------------------------------------------|-----------------|
| Salient information:                                                          |                 |
| Cracks occur locally and are characterised and visible by fine lines.         |                 |
| Mechanical damage to the base material in the form of cracks is inadmissible. |                 |
| Decision:                                                                     |                 |
|                                                                               |                 |
| Remove from service                                                           | Case A          |
| mark 1 at "X" column in EVIC logging                                          |                 |

| Pictorial representation: |  |  |  |
|---------------------------|--|--|--|
|                           |  |  |  |



| 45 Surfa          | ace damage – large and heavily corroded areas                                             | Unpainted axles                 |
|-------------------|-------------------------------------------------------------------------------------------|---------------------------------|
| Salient in        | formation:                                                                                |                                 |
|                   |                                                                                           |                                 |
|                   | Surface damage to base material in form of large and heavily corroded areas (old corrosio | on protection) is inadmissible. |
| <b>Decision</b> : |                                                                                           |                                 |
|                   |                                                                                           |                                 |
|                   | Remove from service                                                                       | Case B                          |
|                   | mark 1 at "X" column in EVIC logging                                                      |                                 |





| 46 Surface damage – single, deeply pitted corrosion scar                           | s Unpair                                         | inted axles |
|------------------------------------------------------------------------------------|--------------------------------------------------|-------------|
| Salient information:                                                               | i                                                |             |
|                                                                                    |                                                  |             |
| Surface damage to the base material in the form of marked, fects) is inadmissible. | local corrosion scars (resulting e.g. from chemi | nical ef-   |
| Decision:                                                                          |                                                  |             |
|                                                                                    |                                                  |             |
| Remove from service                                                                |                                                  | Case B      |
| mark 1 at "X" column in EVIC logging                                               |                                                  | Χ           |

| Pictorial representation: |  |  |
|---------------------------|--|--|
|                           |  |  |



# **ABUTMENT AREA**

| 50 Abutment area                                                                                |        |
|-------------------------------------------------------------------------------------------------|--------|
| Situation:                                                                                      |        |
| Normally, the abutment area cannot be inspected sufficiently for wheelsets mounted in the wagon |        |
| Recommendation:                                                                                 |        |
| Only if there is a clear indication on mechanical or corrosion damages                          |        |
| Take wheelset out                                                                               | Case A |
| Mark <b>1</b> at "X" column in EVIC logging                                                     | Χ      |
| If not judgeable                                                                                |        |
| Leave wheelset in service                                                                       |        |
| Mark 1 at "OK" column in EVIC logging                                                           | 0      |

| Pictorial representation: |              |  |
|---------------------------|--------------|--|
| Not acceptable            | Not jugeable |  |
|                           |              |  |

Version 1.0

60/145



ANNEX 3.2.C: IMPLEMENTATION GUIDE FOR THE EUROPEAN VISUAL INSPECTION CAT-ALOGUE (EVIC) FOR FREIGHT WAGON AXLES

# IMPLEMENTATION UIDE FOR THE EUROPEAN VISUAL INSPECTION CATALOGUE (EVIC) FOR FREIGHT WAGON AXLES

Joint Sector Group for ERA Task Force on wagon/axle maintenance

# Table of Contents

- 1. Definitions
- 2. Basics and preparing inspections
- 3. Conducting the Visual Inspections
- 4. Recording the Visual Inspections

This version replaces all previous versions of the EVIC Implementation Guide

Brussels, 10.03.2010



# 1. Definitions



#### Radsatz Wheelset Essieu monté





In the EVIC procedure instructions, the meaning of several expressions is as follows:

**Replace** = take the wheelset out of the wagon (and repair it in a suitably competent workshop, if possible)

**Repair** = repair the damage in situ (wheelset mounted) according to the relevant rules

**Remove from service** = replace or repair (in situ if possible) according to the criteria

## 2. Basics and preparing inspections

#### 2.1 Reasons for the EVIC program

European wagons keepers have developed since many decades a maintenance system assuring a safety which allowed to become the safest land freight transport.

However, after the tragic accident in Viareggio,

- the European Railway Agency
- the European NSAs and
- the Joint Rail Freight Sector (CER, ERFA, UIP, UIRR, UNIFE)

agreed to investigate in the frame of the ERA Task Force the possibilities for a European approach for harmonised criteria and immediate and mid-term measures ascertaining an even enhanced railway safety in an appropriate way.

The Joint Sector Program worked out in the ERA Task Force was fully adopted in Viareggio in december 2009. The European Action Program consists of a:

-Visual Inspection of the European wheelset/axle population (according to EVIC) -more in-depth investigation of samples of wheelsets from defined operating areas -European-wide implementation of systematic traceability of wheelset maintenance (for the EVIC campaign and for general wheelset maintenance)

The Joint Sector program was approved by all EU authorities and NSAs. It is up to the Sector to implement now what has been decided. The implementation of the program (especially EVIC) is done as a self-commitment in the Sector Association's companies in fulfillment of the Sector's Safety responsibility. There is no legal obligation but a clear commitment of the Sector to the European and National Authorities to implement the Action program. On the Sector level, the EVIC program is currently being integrated in the GCU.

The European NSAs are invited to audit the execution of the decided measures.



### 2.2 Objectives of the EVIC program

In execution of the first element of the European Action program, the **Visual Inspection** of the European wheelset/axle population, the European freight wagon fleet will be subject to a Visual Inspection of the axle status with the objectives

- to judge the axle status according the criteria in the European Visual Inspection Catalogue (EVIC)

- to remove from service axles in a not admissible state (immediately / after unload-ing)

- to record a set of minimum data for the inspected axles

- to hand over removed axles to heavy maintenance with appropriate treatment and NDT

# 2.3 Timeframes for the EVIC inspection

The EVIC program starts in Europe from 01.04.2010 onwards. From then on,

- all wagons
- for dangerous goods (only RID tank wagons) and
- operating under corrosive conditions

will be checked under EVIC conditions to **100% in a 4 years period** 

• all standard wagons will be checked under EVIC conditions to 100% in a 6 years period

In case of removal of the wheelset, the wheelset must be handed over by the keeper to regular heavy maintenance with NDT in accordance to the relevant maintenance systems.

After having checked the fleet to 100%, the EVIC will be applied continuously and/or amended depending on the return of experience (to be discussed in the Task Force).

Recommended priorities for standard wagons are:

- high loading factor (e. g. 50%, F-, T-wagons)
- impact due to drop loading (e. g. some E-types)



#### 2.4 The tasks of the Joint EVIC body per country

**The Joint EVIC body** consists of members nominated by the Railway Associations UIP, CER and ERFA per European country (see table) and is responsible for the EVIC implementation in its respective Member State (plus Switzerland).

The Joint EVIC body will:

- organize the translation in the national language and the issueing of the EVIC
- organize joint central training session(s) per country for all associations, all keepers, all related workshops (and Railway Undertakings for information)
- manage all information of all concerned parties (workshops, keepers,...)
- collect the traceability of EVIC from the keepers
- condense the collected data from the keepers (per country) for the Joint Sector Group
- monitor the implementation of EVIC in the respective companies (e.g. by a checklist)

The collected results will be exploited and monitored by the Joint Sector Group for survey of the implementation process and for report in the ERA Task Force.





| Country         | LANG.      | UIP / Rivière                                       | CER / Müller                                                                                                             | ERFA / Heiming                                                   |
|-----------------|------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| France          | FR         | David Tillier dtillier@ermewa.fr                    | Lafaix SNCF                                                                                                              |                                                                  |
| Switzerland     | DE, FR, IT | Olga Wisniewska<br>tech@cargorail.ch                | Bernet SBB                                                                                                               | Nicolin AAE<br>johannes.nicolin@aae.ch                           |
| Germany         | DE         | Albert Hartmann VPI<br>hartmann@vpihamburg.de       | Manfred Bergmann DB                                                                                                      | Mallikat VDV<br>mallikat@vdv.de                                  |
| Italy           | IT         | Mauro Pacella ASSOFERR<br>Mauro.pacella@assoferr.it | Paolo Fusarpoli TI                                                                                                       |                                                                  |
| Netherlands     | NL         | Don van Riel<br>NVPG@trimodal-europe.nl             | (Jaspers DB SR NL)                                                                                                       |                                                                  |
| Poland          | POL        |                                                     | Krzysztof Buszka PKP<br>k.buszka@pkp-cargo.pl<br>Miroslaw Szczelina Rail-<br>Polska miroslaw.szczelina<br>@railpolska.pl | Dr. Ireneusz Gójski IGTL<br>igojski@aster.pl<br>0048.601.387.516 |
| Austria         | DE         | Günter Heindl VPI<br>office@vpirail.at              | Andreas Schachner ÖBB                                                                                                    |                                                                  |
| Belgium         | FR, NL     | Vincent Bourgois vin-<br>cent.bourgois@trw.be       | Maenhout SNCB                                                                                                            | Monika Heiming moni-<br>ka.heiming@erfa.be                       |
| Hungary         | HON        | Gyözö Czitó<br>nagyd@pultrans.hu                    | Miklos Kremer MAV<br>kremerm@mav.hu                                                                                      |                                                                  |
|                 |            | Geoffrey Pratt                                      | Minary Drotos MAV Cargo                                                                                                  | Lord Tony Berkeley                                               |
| United Kingdom  | EN         | geoffrey.pratt@btconnect.com                        | Paul Antcliff                                                                                                            | tony@rfg.org.uk                                                  |
| Ireland         | EN         |                                                     | Damien Lambert IrishRail damien.lambert@irishrail.ie                                                                     | tony@rfg.org.uk                                                  |
| Czech Republic  | CZ         | Martin Vosta sekreta-<br>riat@sdruzeni-spv.cz       | Martin Vosta sekreta-<br>riat@sdruzeni-spv.cz                                                                            |                                                                  |
| Slovak Republic |            | Jaroslav Miklanek<br>zvkv@zelos.sk                  | Roman Sklenar                                                                                                            |                                                                  |
| Latvia          | LAT        |                                                     | Dainis Zvaners LDz                                                                                                       |                                                                  |
| Lithuania       | LIT        |                                                     | Kęstutis Rakauskas<br>k.rakauskas@ litrail.lt                                                                            | Edita Gerasimoviene<br>e.gerasimoviene<br>@transachema.lt        |
| Romania         | ROM        | Nucu Morar nmor-<br>ar@ermewa.ro                    | Gheorghe Avram gheor-<br>ghe.avram@irsgroup.eu                                                                           | Gheorghe Avram gheor-<br>ghe.avram@irsgrou<br>p.eu               |
| Spain           | E          | Alfonso Ynigo<br>Alfonso.Ynigo@transfesa.com        |                                                                                                                          |                                                                  |
| Sweden          | SWE        | Staffan Rittgard in-<br>fo@privatvagnar.com         |                                                                                                                          | Stephan Aström<br>Stephan.astrom@<br>hectorrail.com              |
| Slovenia        | SLO        |                                                     | Viktor Sinkovec<br>viktor.sinkovec                                                                                       |                                                                  |
| Portugal        | POR        |                                                     | Joaquim José Martins                                                                                                     |                                                                  |
| Greece          | GR         |                                                     |                                                                                                                          |                                                                  |
| Luxembourg      | FR, DE     |                                                     | Gaston Zens<br>gaston.zens@cflcargo.lu                                                                                   |                                                                  |
| Estonia         | F          |                                                     | <u> </u>                                                                                                                 |                                                                  |

# as per begin march 2010



#### 2.5 Preparing the working documents

The conditions for the EVIC program are laid down in this **EVIC Implementation Guide 2.2**. The criteria for inspections, illustrations and required actions are laid down in the **EVIC 2.11 document** 

The reference is the English language version. All documents (english and translated) will also be published officially on **xxx website** (to be defined by the Joint Sector Group)

The Joint EVIC body per country delivers the EVIC documents in the national language

**The Joint EVIC body** per country issues the EVIC documents to the countrie's keepers (and, for information, to the RUs)

**The keepers** (ordering the Visual Inspection from the workshops) hand over the documents to the executing workshops.

**The executing workshop** adds the required national and local working rules as well as all supporting further instructions on/for application on the workshop level.

#### 2.6 Mandating and invoicing the EVIC inspection

The implementation of the EVIC in the GCU (including traceability) has already started (annex 10, new appendix 3)

The EVIC execution must be mandated to the contracted workshops by the keepers (in the meantime until the full EVIC implementation in GCU)

**The keeper must take over the costs** for executing the EVIC program (inspection and tracing) and potentially for a required change of the wheelset (future amendment in GCU annex 12)

In a first step, the workshops must not execute the EVIC inspections in a wagon GCU repair if not specifically ordered by the keeper (implementation in GCU is in progress). This point is under urgent clarification in the GCU technical committees.

The workshops must give the results of the EVIC tracing to the keeper

- with the corresponding invoice (maximum after one month)or

- separately with the monthly separate summary sending

The workshops must register the wheelset IDs/number(s) of the new mounted wheelset(s) (replacement for "EVIC failed" wheelset) in the invoices/reporting document to the keeper (normally already done in the maintenance documentation)



## 2.7 Staff qualifications

The inspections have to be conducted by staff qualified in application of this Visual Inspection Catalogue.

It is not necessary for the operatives conducting such visual inspections to be qualified as NDT visual inspectors pursuant to EN 473.

The staff involved in this inspection **should be trained one day** for the correct use of this procedure.

It is under the responsibility of the workshop to update a list of trained workers for the use of the present procedure.



# 3. Conducting the Visual Inspections

### **3.1 Execution of the Visual Inspections**

The Visual Inspection of the freight wagon's axle shafts for damage to material and coating

(if existing) is mandatory

- during light maintenance
- each time the wagon is in a workshop (not mobile team)

and if one of the following conditions is fulfilled:

- the wagon is on a pit or
- the wagon is lifted

In case of non judgeable defects (not sufficiently detailed by the descriptions in the EVIC), the executor of the EVIC inspection must contact the keeper for further instructions.

#### A replacing wheelset for a sorted out axle must be in an "EVIC ok" status.

The EVIC doesn't replace existing maintenance rules. First, existing maintenance rules must be applied, then the EVIC check. If an axle is sorted out with current maintenance rules, it is not necessary to apply the EVIC

(*Remark: the visual axle inspection is also mandatory in case of wagon heavy maintenance events*)

The visual inspection covers the complete area of the axle-shaft surface between the wheels. See special instructions for the abutment area in the EVIC 2.11.

#### The inspection area is to be examined for

- mechanical damage (fluting, pitting and notching, cracks)
  - surface damage (areas eaten away, corrosion scars)
- coating damage (with and without corrosion) if coating system existing

**Reference images in EVIC 2.11** (typical damage features) are used for identifying inadmissible forms of damage.

It is not foreseen to clean the axle. In case of doubt, clean axle (locally) to allow examination

If natural light intensity is too poor, a supplementary white light source must be used in order to obtain an adequate visibility on the axle.

٠



Axle shafts with inadmissible forms of damage are to be repaired according to the prescriptions, if possible. Otherwise, the axles must be replaced.

An example for an adequate position for the staff conducting the visual inspection is given in the figure below.

If the wheelset cannot rotate (if the wagon is not lifted up), the visibility of the full surface of the axle must be assured in a different way.



Figure 2 - Inspection angle and distance

## 3.2 Actions to be taken after inspection (cases)

The following **cases** describe the actions to be taken after a Visual Inspection of the axle:

A Remove the wheelset from service without delay

B Remove the wheelset from service after unloading the wagon and/or sending back to home workshop

C Leave wheelset in service until the next revision/overhaul of the wagon or repair the damage in situ on the wheelset. In the next revision/overhaul, the remove from service is mandatory

**Remove from service** = replace or repair (in situ if possible) according to the criteria

For wheelsets operated in wagons under heavy corrosive conditions, only the categories A and B are allowed.



# 4. Recording the Visual Inspections

The results of the Visual Inspection program must be recorded / traced after the inspection in the workshop.

### 4.1 Overwiev on EVIC categories and logging

| Painted and unpainted axles |                   |                                          | Category<br>for EVIC<br>logging |          |
|-----------------------------|-------------------|------------------------------------------|---------------------------------|----------|
| 30                          | No defects        |                                          | 0                               |          |
| 40                          | No defects        |                                          | 0                               |          |
|                             |                   |                                          |                                 |          |
| Painted axles               |                   |                                          |                                 |          |
| 31                          | Mechanical damage | sharp edged circum-<br>ferential fluting | Х                               | (not ok) |
| 32                          | Mechanical damage | smooth edged circum-<br>ferential groove | X                               | (not ok) |
| 33                          | Mechanical damage | sharp edged notching                     | Х                               | (not ok) |
| 34                          | Mechanical damage | Cracks                                   | Х                               | (not ok) |
| 35                          | Surface damage    | large and heavily corroded areas         | X                               | (not ok) |
| 36                          | Surface damage    | single, deeply pitted corrosion scars    | X                               | (not ok) |
| 37                          | Coating damage    | with or without corrosion                | C                               |          |
| Unpainted axles             |                   |                                          |                                 |          |
| 41                          | Mechanical damage | sharp edged circum-<br>ferential fluting | X                               | (not ok) |
| 42                          | Mechanical damage | smooth edged circum-<br>ferential groove | X                               | (not ok) |
| 43                          | Mechanical damage | sharp edged notching                     | X                               | (not ok) |
| 44                          | Mechanical damage | Cracks                                   | X                               | (not ok) |
| 45                          | Surface damage    | very heavy, deep and large corrosion     | X                               | (not ok) |
| 46                          | Surface damage    | single, deeply pitted corrosion scars    | X                               | (not ok) |
| 47                          |                   |                                          |                                 |          |
| All axles                   |                   |                                          |                                 |          |
| 50                          | Abutment area     |                                          | Х                               | (not ok) |



The roles and TO DOs of the several parties involved are as follows:

### 4.2 Workshops tasks

#### The workshops must

- · record the results of the Visual Inspection
- for each keeper
- in paper or
- in electronic file format

according to the "EVIC keeper traceability 2.2" format (xls file):

## DATA ARE ONLY EXAMPLES:

| Workshop                                                         | TERGNI   | ER                                   |                                                 | Year                     | 201               | 0                        |
|------------------------------------------------------------------|----------|--------------------------------------|-------------------------------------------------|--------------------------|-------------------|--------------------------|
| Country<br>of the workshop                                       | France   |                                      | l                                               | Month                    | 5                 | 5                        |
| Keeper                                                           | ERMEW    | 4                                    | (as written o                                   | n the wag                | ion)              |                          |
|                                                                  |          | enter only 1 result per wheel-       |                                                 |                          |                   |                          |
|                                                                  |          |                                      |                                                 | Other check<br>result    | EVIC<br>sult      | C check re-              |
|                                                                  |          | - as fa<br>fial<br>- enter N<br>fial | r as identi-<br>ble<br>Il if not identi-<br>ble | e.g.<br>GCU<br>c<br>heck | e<br>where<br>pri | enter 1<br>appro-<br>ate |
| wagon<br>number<br>(set wagon number<br>only once for all axles) | Dat<br>e | whee<br>Iset<br>N                    | wheelset<br>type                                | enter 1<br>where ap-     | "ok"              | "X"<br>"C"               |
| 338712345689                                                     | 02.0     | 12                                   | 9                                               |                          | 1                 |                          |
|                                                                  |          | 12                                   | 9                                               |                          | 1                 |                          |
|                                                                  |          | 345621                               | 9                                               |                          |                   | 1                        |
| 2207000000                                                       | 10.0     | 41                                   | 9                                               |                          | 4                 | 1                        |
| 33870000002                                                      | 12.0     | 2                                    | 9                                               |                          | 1                 |                          |
|                                                                  |          | Z<br>N                               | 5N                                              | 1                        |                   |                          |
|                                                                  |          | 2                                    | 9                                               |                          | 1                 |                          |
| 338700000123                                                     | 12.0     | 13213213                             | 9                                               |                          |                   | 1                        |
|                                                                  |          | 123213141                            | N                                               | 1                        |                   |                          |
| 338701231123                                                     | 13.0     | 34562133                             | 9                                               |                          |                   | 1                        |
|                                                                  |          | 34562132                             | 9                                               |                          |                   | 1                        |


#### "EVIC keeper traceability 2.2"

#### 4.3 Keepers tasks

#### The keepers must

• collect the monthly results from the contracted workshop (per country)

1st week of next month

- keep the records
- condense the received monthly results from all workshops (per country) in electronic file format according to the "EVIC monthly keeper report 2.2" format,

Nota: the name of the keeper has to be set according to VKM or registration in NVR.

 report monthly electronically the condensed "EVIC monthly keeper report" to the Joint EVIC bodies (details to be defined by the Joint EVIC bodies themselves):

(Example Germany: evic.germany@vpihamburg.de)

#### DATA ARE ONLY EXAMPLES:

Country



ID of the keeper to be formatted according to VKM or NVR registration

| keeper | Month | Year | No of<br>wagons<br>checked | No of axles<br>sorted<br>out for<br>other rea-<br>sons | No of EVIC<br>axles<br>" | No of<br>EVIC<br>axles<br>"X" | No of<br>EVIC<br>axles<br>C" |
|--------|-------|------|----------------------------|--------------------------------------------------------|--------------------------|-------------------------------|------------------------------|
| Х      | 5     | 201  | 4                          | 100                                                    | 1000                     | 8                             | 120                          |

"EVIC monthly keeper report 2.2"



#### 4.4 Joint EVIC bodies tasks

#### The Joint EVIC bodies must

• collect the "EVIC monthly keeper reports" from the different keepers

summarize electronically the monthly results of all keepers per country according to the

#### "EVIC monthly country report 2.2" format 2nd week of next month

• send this report monthly electronically to the JSG: evic.europe@deutschebahn.com

#### DATA ARE ONLY EXAMPLES:

Country

try FRANCE

ID of the keeper to be formatted according to VKM or NVR registration

| keeper | Mont | Year | No of   | No of ax-    | No of EVIC | No of | No of EVIC |
|--------|------|------|---------|--------------|------------|-------|------------|
| -      | h    |      | wagons  | les sorted   | axles      | EVIC  | axles      |
|        |      |      | checked | out for oth- |            | axles |            |
|        |      |      |         | er reasons   | "          | X""   | С""        |
| U      | 5    | 201  |         |              |            |       |            |
| Х      | 5    | 201  |         | On           | v summar   | ized  |            |
|        |      |      |         | data         | are report | ed in |            |
|        |      |      |         | the F        | RA Task I  | Force |            |
|        |      |      |         |              |            |       |            |
|        |      |      |         |              |            |       |            |
| S      |      |      | 7       | 9            | 180        | 1     | 2          |

"EVIC monthly country report 2.2"



#### ANNEX 3.2.2.A: EVIC Sampling procedure

#### 1 – Introduction

After the tragic accident in Viareggio, the European Railway Agency, the European NSAs and the Joint Rail Freight Sector agreed to investigate in the frame of the ERA Task Force the possibilities for a European approach for harmonised criteria and immediate and mid-term measures ascertaining an even enhanced railway safety in an appropriate way, taking into account the expressed several requests for amendment.

The sector proposes a European programme for Visual Inspections (EVIC) of the axles related to the risk domain operated in. Axles sorted out are brought to heavy maintenance including non destructive tests (NDT).

Inspections are prioritized according to identified potential risk domains.

A sampling programme with more in-depth NDT investigation of axles taken from the risk domains will be performed in parallel to prove the EVIC approach and to clarify the assumption of the defined risk domains.

#### 2 – Aim of the sampling

The EVIC can be considered as a reference manual for RUs and keepers providing the criteria to freight wagon maintenance staff to visually identify damages, during light maintenance in work-shops. A wheel-set/axle which doesn't meet the EVIC-criteria will be discarded from service and undergo the heavy maintenance with non-destructive tests (NDTs).

Additionally, a sample of axles which fulfil the EVIC and a sample of them which do not fulfil the EVIC criteria will be inspected in a special monitored maintenance programme with NDT ("the sampling programme").

Comparisons of the NDT results of "EVIC failed" and "EVIC passed" axles will be performed. The results will be compared also to the results from heavy maintenance currently undertaken. According to the return of experience, the sector will propose appropriate measures to deal with identified risk areas.

#### 3 – Description of the sampling methods

#### 3.1 Generality

According to the risk assessment, the sector identifies 4 different risks domains: corrosive conditions, vehicles transporting salt, potash, fertilizers ; high loading factor, wagon with 50% full loaded in service; impact due to drop loading, typical examples: scrap, clay, wood, coils, etc.; dangerous goods (RID).

Samples of axles from both states (1000 EVIC passed/ 1000 EVIC failed) taken from those 4 special traffics will be subject to each NDT system: manual UT, auto UT and MT as shown in the table below.



| NDT system | Sampling<br>theoretical | cc | R      | High | Loading | Drop | Loading | RID  |       |
|------------|-------------------------|----|--------|------|---------|------|---------|------|-------|
|            |                         | EV | EVIC-  | EVI  | EVIC-   | EVI  | EVIC-   | EVI  | EVIC- |
|            |                         | C+ |        | C+   |         | C+   |         | C+   |       |
|            | 8000                    | 10 | 0 1000 | 100  | 1000    | 100  | 1000    | 100  | 1000  |
| UT MAN     | 8000                    | 0  |        | 0    |         | 0    |         | 0    |       |
|            | 8000                    | 10 | 0 1000 | 100  | 1000    | 100  | 1000    | 100  | 1000  |
| UT auto    | 8000                    | 0  |        | 0    |         | 0    |         | 0    |       |
| NAT        | 8000                    | 10 | 0 1000 | 100  | 1000    | 100  | 1000    | 100  | 1000  |
|            | 8000                    | 0  |        | 0    |         | 0    |         | 0    |       |
| Total      | 24 000                  | 60 | 00     | 6000 |         | 6000 |         | 6000 |       |

#### 3.2 Selection of the axles for the sampling programme

A possible way to select axles for the sampling programme (referred to activities in heavy maintenance) is described below.





In light maintenance, only EVIC failed wheelset (red one) are removing from service, and then this is favourable for the sampling because these axles are sorted earlier than with the existing maintenance rules. EVIC passed wheelset stay under the vehicle; we cannot use them for the sampling. We can use if we accept to remove them from service but this will be increase the cost.

In the wheelset entering in heavy maintenance (green one), we can, by EVIC application, marked the EVIC OK wheelset (blue one). This is also favourable because these wheelset will be deposed by normal existing maintenance rules (the previous heavy maintenance is old or the mileage is important) and they are still in a good state.

The expertise according to the maintenance scheme allows eliminating non reparable wheelset (i.e. distort axles, wheel seat at the wear limit...) or to adapt the consistency of the repair (i.e. a wheelset come in for reprofiling but the size of the defect is too big so the wheel shall be replace).

This selection must be applied as far as the number of sampled axles is not equal to the target.

Once the number of sampled axles is equal to the target, the selection of the axles becomes:





#### **3.3 Description of the sampling protocol**

#### 3.3.1. The different states of the sampling programme are described below

#### General information to be documented

The following information must be documented:

- workshop;
- wheelset type;
- wheelset number;
- risk domain: DG, HL, DL, COR;
- date, workshop and type of the last NDT.

For the following steps, the side of the axle must be clearly identified and remain the same during the whole process.

#### EVIC (cf. EVIC implementation guide)

The following information must be documented:

- EVIC result (category);

- Precise region where the EVIC defects occurred for later comparison to the NDT results (9 sections according to the picture showed in §7);

- Procedure for removing the coating (if needed).

#### NDT before treatment

The tests are realised according to the standard maintenance regime of the RU/Keepers, particularly the acceptance/failure criteria.

Tests are done with wheels mounted:

- MT on free surface, UT in wheel seat;

- Auto UT on the entire surface;
- Man UT; on the entire surface;

or with wheels dismounted (in MT system).

100% of the axle surface is checked.

The following information must be documented:

- NDT system apply at each section (Cf. § 3.3.2.);

- NDT detected failures section where failure occurred (9 sections according to the picture showed in §7);

- graphic detailing of the defect and the length as shown in §7;

- in case on automatic documentation of the NDT, the protocol must be kept.

#### <u>Treatment</u>

The following information must be documented: which procedure for surface correction (grinding, turning, depth, diameter, etc.).



#### NDT after treatment

The following information must be documented: type of NDT and NDT results after treatment (axle scraped or not).

# 3.3.2. NDT system parameters to be documented for the workshop concerning by the sampling programme (Cf. §9)

#### 3.3.2.1 General

- Quality certification of the workshop
- Worker certification level
- Rejection criteria (length or depth and direction)
- NDT production average p/year
- Date of implementation of the process in the workshop

#### <u>3.3.2.2 MT</u>

- Surface preparation

- Magnetization technique, including (as appropriate) indicated current values, tangential field strengths, waveform, contact or pole, spacing, coil dimensions, etc.

- Detection media used, and contrast aid paint if used
- Application of detection media
- Viewing conditions
- Sensitivity

#### <u>3.3.2.3 UT</u>

- Surface preparation
  Technique:
  Transmission
  Pulse echo
  Probe
  Single
  Double (twin)
  Separate (transmitter and receiver)
- Vibration mode
   Longitudinal wave
   Transverse wave
   Lamb wave
   Rayleigh wave
- Transducer Frequency Dimensions Focusing probe

Coupling media
 Water
 Contact paste



Oil Grease Cellulose paste

- Calibration blocks
- Reference blocks
- Sensitivity

#### 3.4 Responsibilities of the person in charge of the sampling programme

The person in charge of the sampling programme per member will:

• organize the translation in the national language and the issuing of Sampling Programme Implementation Guide;

• manage all information of all concerned parties (workshops, etc.);

• collect the data for traceability and condense the collected information for the Joint Sector Group (see § 6).

#### <u>4 – Programme</u>

This is the decided programme for the beginning of the sampling

| Member  | Number of axles<br>(total) | % of total | sampling<br>theoretical | samplingdeci<br>ded | NDT System | COR   | RID   | High load | Drop load |
|---------|----------------------------|------------|-------------------------|---------------------|------------|-------|-------|-----------|-----------|
|         |                            |            |                         |                     |            |       |       |           |           |
| РКР     | 280'000                    | 17%        | 4'065                   | 4'000               | UT man     | 2000  | 0     | 1000      | 1000      |
| SBB     | 30'000                     | 2%         | 436                     | 600                 | UT man     | 0     | 0     | 350       | 250       |
| AAE     | 40'000                     | 2%         | 581                     | 750                 | UT man     |       |       | 50        | 700       |
| SNCB    | 60'000                     | 4%         | 871                     | 800                 | UT man     | 0     |       | 400       | 400       |
| HUPAC   | 16'000                     | 1%         | 232                     | 300                 | UT man     |       | 0     | 150       | 150       |
| Total   | 426'000                    | 0          | 6'185                   | 6'450               |            | 2'000 | -     | 1'950     | 2'500     |
|         |                            |            |                         |                     |            |       |       |           |           |
| DB SR D | 370'000                    | 22%        | 5'372                   | 5'000               | UT auto    | 3300  | 0     | 500       | 1200      |
| TI      | 115'000                    | 7%         | 1'670                   | 1'300               | UT auto    | 200   |       | 1100      |           |
| ÖBB     | 60'000                     | 4%         | 871                     | 700                 | UT auto    |       |       | 400       | 300       |
| AAE     | 80'000                     | 5%         | 1'162                   | 1'000               | UT auto    |       |       | 200       | 800       |
| Total   | 625'000                    |            | 9'074                   | 8'000               |            | 3'500 | -     | 2'200     | 2'300     |
|         |                            |            |                         |                     |            |       |       |           |           |
| UIP     | 300'000                    | 18%        | 4'356                   | 6'000               | MT         |       | 6000  |           |           |
| SNCF    | 291'000                    | 18%        | 4'225                   | 3'550               | MT, UT man | 500   |       | 1850      | 1200      |
| SLO     | 11'000                     | 1%         | 160                     | -                   | MT/ UT man |       |       |           |           |
| Total   | 602'000                    |            | 8'740                   | 9'550               |            | 500   | 6'000 | 1'850     | 1'200     |
|         |                            |            |                         |                     |            |       |       |           |           |
| Total   | 1'653'000                  |            | 24'000                  | 24'000              |            | 6'000 | 6'000 | 6'000     | 6'000     |



#### <u> 5 - Planning</u>

The sampling will take place over a 12 month period after which an evaluation of the results and of the effectiveness of the campaign will be carried out to decide on the way forward. A preliminary evaluation of the results should be done after 6 months from the start of the campaign.

The campaign will start together with the EVIC programme (April 2010). The status of the implementation will be reported in Task Force meeting.

#### <u>6 – Recording the sampling programme</u>

The results of the sampling programme must be recorded / traced.

The roles and TO DOs of the several parties involved are as follows:

#### 6.1 - Workshops tasks

The workshops concerned by the sampling programme must:

- recorded the results of the sampling, in paper and/or in electronic file format, according to Traceability sheet shown §7;

- condense the results in electronic file according to the dedicated data sheet shown §8.1;

- send this file monthly to the person in charge of the sampling programme.

#### 6.2 - Person in charge of the sampling programme tasks

The person in charge of the sampling programme must:

- collect the sampling monthly file from the workshops;

- summarize electronically the monthly results from all workshops according to the dedicated data sheet shown in §8.1;

- send this report monthly to the JSG.

#### 6.3 - JSG tasks

- collect and summarize all the monthly report of the person in charge of the sampling programme;

- condense the results according to the presentation shown in §8.2.



#### <u>7 – Traceability</u>

| Workshop | Risk Domain | Wheelset | Wheelset number | Date              | Wheel dismounted      | Bearing ring dismounted |
|----------|-------------|----------|-----------------|-------------------|-----------------------|-------------------------|
| TERGNIER | DG          | 9052     | 12345           | 24 / 02 /<br>2010 | <mark>Yes</mark> / No | Yes / No                |

#### Previous axle maintenance with NDT

| Date         | Level | NDT System | Workshop |  |  |
|--------------|-------|------------|----------|--|--|
| 15 /01/ 2001 | СОР   | MT         | Rennes   |  |  |

#### EVIC APPLICATION

| Zone                                | B journal | B abut- | B wheel | B transition    | Shaft | A transition    | A wheel | A abut- | A journal |
|-------------------------------------|-----------|---------|---------|-----------------|-------|-----------------|---------|---------|-----------|
|                                     |           | ment    | seat    | radius (100 mm) |       | radius (100 mm) | seat    | ment    |           |
| EVIC defect                         |           |         |         |                 | 33,34 |                 |         |         |           |
| category                            |           |         |         |                 |       |                 |         |         |           |
| Roughness or UIC surface categories |           |         |         |                 |       |                 |         |         |           |





#### NDT before treatment

| Zone           | B journal | B abut- | B wheel | B transition              | Shaft              | A transition              | A wheel | A abut-  | A journal |
|----------------|-----------|---------|---------|---------------------------|--------------------|---------------------------|---------|----------|-----------|
| NDT System     |           | ment    | seat    | radius (100 mm<br>length) |                    | radius (100 mm<br>length) | seat    | ment     |           |
| МТ             | No        | No      | No      | No                        | Yes                | No                        | No      | No       | No        |
| Man UT         |           |         |         |                           |                    |                           |         |          |           |
| Auto UT        |           |         |         |                           |                    |                           |         |          |           |
| Eddy Current   |           |         |         |                           |                    |                           |         |          |           |
| Defect in EVIC |           | Yes /   |         | Yes / No                  | Yes <mark>/</mark> | Yes / No                  |         | Yes / No |           |
| zone           |           | No      |         |                           | No No              |                           |         |          |           |

#### **Treatment**

Grinding the shaft central part 0,5 mm depth.

#### NDT after treatment

| MT man | UT auto | Axle scra |
|--------|---------|-----------|
|        |         | Axle scra |

| Axle scraped for NDT reason   | Yes / <mark>No</mark> |
|-------------------------------|-----------------------|
| Axle scraped for other reason | Reason:               |

#### User Manual for the completion of the data sheet

EVIC APPLICATION

Indicate for each zone the defect category number according to EVIC catalogue and if necessary marked on the axle drawing

NDT before treatment

Marked for each zone and in the relevant NDT system line if you have found a defect or not and marked the defect (form, direction and dimensions) on the axle drawing. (see example on drawing)

Treatment

Indicate which treatment has be done ie turning the shaft, or grinding locally or polishing locally

NDT after treatment

Marked a cross the used NDT system and if the axle is scraped or not.



#### 8 – Presentation of the results

#### 8.1 – Dedicated data sheet

| Original     | Risk catego- | Wheel    | Whe   | UIC     | Axle judge-    | E      | NDT        | NDT       | NDT       |
|--------------|--------------|----------|-------|---------|----------------|--------|------------|-----------|-----------|
| Wagon number | ry           | set num- | elset | Туре    | ment according | VIC    | after EVIC | Defect in | after     |
| if possible  |              | ber      | type  |         | normal mainte- | Result | and before | the EVIC  | treatment |
|              |              |          |       |         | nance rules    |        | treatment  | zone      |           |
| 1234567890   |              |          |       |         |                | 0      |            |           |           |
| 12           | High loading | 1234     | 9052  | AIII(2) | ОК             | K      | ОК         | No        | ОК        |
| 3380897654   | Dangerous    |          |       |         |                | 0      |            |           |           |
| 32           | good         | 1235     | 9052  | AIII(2) | ОК             | К      | NOK        | No        | ОК        |
| 3380897654   | Dangerous    |          |       |         |                | N      |            |           |           |
| 33           | good         | 123      | 9052  | AIII(2) | ОК             | ОК     | NOK        | No        | ОК        |
| 3380897654   |              |          |       |         |                | 0      |            |           |           |
| 34           | Drop loading | 12345    | 002   | В       | ОК             | К      | ОК         | Yes       | ОК        |
| 3380897654   |              |          |       |         |                | N      |            |           |           |
| 35           | High loading | 865      | 9052  | AIII(2) | ОК             | ОК     | ОК         | Yes       | ОК        |
| 3380897654   | Corrosive    |          |       |         |                | 0      |            |           |           |
| 36           | traffic      | 876      | 9056  | No      | ОК             | К      | ОК         | No        | ОК        |
| 3380897654   |              |          |       |         |                | N      |            |           |           |
| 37           | Drop loading | 43       | 9052  | AIII(2) | ОК             | ОК     | NOK        | No        | NOK       |
| 3380897654   | Corrosive    |          |       |         |                |        |            |           |           |
| 38           | traffic      | 12       | 9056  | No      | ОК             | С      | NOK        | No        | NOK       |
| 3380897654   | Dangerous    |          |       |         |                | 0      |            |           |           |
| 39           | good         | 456      | 9052  | AIII(2) | ОК             | K      | ОК         | No        | OK        |



#### 8.2 – Example of presentation of the results



Version 1.0



#### <u>9 – Practical information</u>

List of concerned wagons classes for the 4 risk domains, workshop(s) concerned by the sampling programme & Person in charge of the sampling programme

|            | Deveen in shares of the compling are                  | Workshop(s) con-                      |                                                                                                                                                                                                                                                                                                                                 |    | Wagon classes                                                                         |                                                                                                                                                                            |                       |
|------------|-------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Members    | gramme                                                | cerned by the sam-<br>pling           | Corrosive traffic                                                                                                                                                                                                                                                                                                               | DG | High loading                                                                          | Drop load-<br>ing                                                                                                                                                          | Normal opera-<br>tion |
| PKP / IGTL | Ireneusz Gojski (IGTL)                                |                                       |                                                                                                                                                                                                                                                                                                                                 |    |                                                                                       |                                                                                                                                                                            |                       |
| DB SR D    | Michael Gerstner<br>Michael.Gerstner@deutschebahn.com | Paderborn Eberswal<br>born Eberswalde | Tamns x 886.0,<br>Tamns x 893.1<br>Taoosy 894.0<br>Tanoos 896.0<br>Tanoos 896.1<br>Uaoos y 948.0<br>Tads 957.0<br>Tads 957.0<br>Tads y 957.1<br>Tads 958.0<br>Tads y 958.1<br>Talns x 968.1 Talns<br>x 968.2 Talns x<br>968.6<br>Tds 930.0 Tds<br>932.0 Tds 934.0<br>Tds 937.0 Tds<br>938.0<br>Tds 940.0 Tds<br>941.0 Tds 942.0 |    | Falns 121<br>Faals 151<br>Falrrs 152,<br>153<br>Fal(n)s 164,<br>165, 180,<br>182, 183 | Falns 121,<br>Faals<br>151Falrrs<br>152, 153<br>Fal(n)s 164,<br>165, 180,<br>182, 183<br>Fals 124,<br>128<br>Eaos 051,<br>Eanos 052,<br>Ealos 053,<br>Eas 066,<br>Eaos 075 |                       |
| SNCB       | Etienne Maenhout<br>Etienne.maenhout@b-rail.be        | AC Gentbrugge                         |                                                                                                                                                                                                                                                                                                                                 |    | Tads<br>1004 D1                                                                       | Shimms                                                                                                                                                                     |                       |
| ÖBB        | Andreas Schachner<br>Andreas.Schachner@oebb.at        | TS Werk Knittelfeld                   |                                                                                                                                                                                                                                                                                                                                 |    | Falns                                                                                 | Shimmns                                                                                                                                                                    |                       |

Version 1.0



| SBB   | Thomas Bernet<br>bernet.thomas@sbbcargo.com   | SBB / FFS, IW<br>Bellinzona                                   |       | Fans-u,<br>Shimmns,<br>Shimms,<br>(Snps),<br>(Sps),<br>Tagnpps,<br>(Tgpps),<br>Uacs, Ucs | Eanos,<br>Eaos                                              |  |
|-------|-----------------------------------------------|---------------------------------------------------------------|-------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| SNCF  | Bernard Lafaix<br>bernard.lafaix@sncf.fr      | TC de Tergnier                                                |       | S5*, T80,<br>TADS                                                                        | tombereau<br>(E71, E79,<br>E80) et<br>grumier<br>(R54, R55) |  |
| UIP   | Charles-Antoine Rivière                       | FERIFOS (ERME-<br>WA)<br>Brühl (VTG)<br>ZntkOstroda<br>(GATX) |       |                                                                                          |                                                             |  |
| AAE   | Johannes Nicolin<br>Johannes.nicolin@aae.ch   | TS Werk Knittel-<br>feld for UT auto<br>for UT man            |       |                                                                                          |                                                             |  |
| HUPAC | Olga Wisniewska<br>tech@cargorail.ch          |                                                               |       |                                                                                          |                                                             |  |
| ті    | Alessandro Corbizi<br>A.corbizi@trenitalia.it | Osmannoro (FI)                                                | Tadns | Falrrs(28)<br>Sgns(34)<br>Rhlmms                                                         |                                                             |  |



#### NDT system parameters to be documented for the workshop concerning by the sampling programme

|                                                               | SNCF                   | DB                                                                                        | SNCB                                                      | OBB                    | SBB                                     | VPI                                               | ТІ                      | РКР | AAE | HUPAC |
|---------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|-----------------------------------------|---------------------------------------------------|-------------------------|-----|-----|-------|
| <mark>General</mark>                                          |                        |                                                                                           |                                                           |                        |                                         |                                                   |                         |     |     |       |
| Quality certification of the workshop                         | ISO 9000<br>ISO 14000  | ISO<br>9001/9002<br>ISO 14001                                                             | ISO<br>9001:2000                                          | ISO9001                | ISO 9000<br>ISO 14000<br>OHSAS<br>18001 | ISO 9000<br>ISO 14000                             | ISO 9001                |     |     |       |
| Worker certification<br>level                                 | EN 473<br>N1 & N2      | EN 473, DIN<br>27201-7<br>Level 1 a. 2                                                    | Internal train-<br>ing (similar to<br>EN 473 N1<br>level) | EN 473<br>Level1 & 2   | EN 473<br>MT 1 / 2                      | EN 473 MT 1<br>/ 2<br>Prüfaufsicht<br>level 2 / 3 | EN 473<br>Lev.1, 2, 3   |     |     |       |
| Rejection criteria<br>(length or depth and direc-<br>tion)    | No indication<br>(MT)  | MT: length<br>2mm,<br>transverse<br>and diago-<br>nal,<br>UT: depth<br>2mm,<br>transverse | No crack<br>allowed (MT)                                  | 2mm UT<br>3mm MT       | 2 mm cross<br>direction                 | no linear<br>indication                           | No indica-<br>tion (MT) |     |     |       |
| NDT production average p/year                                 | <tbd><tbd></tbd></tbd> | ca. 45000                                                                                 | 10.000                                                    | ~13500 UT<br>~13500 MT | ~ 7000                                  |                                                   | UT_4000<br>MT_600       |     |     |       |
| Date of implementation<br>of the process in the work-<br>shop | 1970's                 | 2001/2007                                                                                 | 1970's                                                    | 1996 MT<br>2005 UT     | 2005                                    | 2000                                              | MT_1985<br>UT_(sixties) |     |     |       |



|                                     | SNCF                                                   | DB                             | SNCB                | OBB                    | SBB                                                            | VPI                                                      | ті                                           | РКР | AAE | HUPAC |
|-------------------------------------|--------------------------------------------------------|--------------------------------|---------------------|------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-----|-----|-------|
| MT                                  |                                                        |                                |                     |                        |                                                                |                                                          |                                              |     |     |       |
| Surface preparation                 | Blasting                                               | blasting                       | Cleaning,<br>brush  | Brushing or turning    | Blasting                                                       | Blasting                                                 | Grinding                                     |     |     |       |
| Magnetization tech-<br>nique        | Rigid coil                                             | rigid coil,<br>current<br>flow | Rigid coil          | Coil                   | Rigid coil                                                     | Rigid coil                                               | Rigid Coil                                   |     |     |       |
| Detection media                     | Fluores-<br>cent                                       | fluorescent                    | fluorescent         | Fluores-<br>cent       | Fluorescent                                                    | Fluorescent                                              | Fluorescent                                  |     |     |       |
| Application of detec-<br>tion media | Flow onto<br>surface                                   | spraying                       | spraying            | Sprinkle on<br>surface | Flow onto<br>surface                                           | Spray on sur-<br>face, flow on<br>surface (not<br>often) | Flow onto<br>surface                         |     |     |       |
| Viewing conditions                  | EN ISO<br>9934                                         | EN ISO<br>9934                 | EN ISO 9934         |                        | EN ISO 9934                                                    | EN ISO 9934                                              | EN ISO<br>9934                               |     |     |       |
| Sensitivity                         | 0.1mm to<br>2mm depend-<br>ing on surface<br>roughness | 0,1mm                          | Depth ≥ 0.1<br>mm   | <1mm                   | 1mm to 1.5<br>mm depend-<br>ing on sur-<br>face rough-<br>ness | 0.1mm pos-<br>sible, depend-<br>ing on surface           | 0.1mm to<br>2mm de-<br>pending on<br>surface |     |     |       |
| UT                                  |                                                        |                                |                     |                        |                                                                |                                                          |                                              |     |     |       |
| Surface preparation                 | blasting                                               | blasting                       | Cleaning,<br>brush  | Brushing or<br>turning | Blasting<br>Grinding                                           | Blasting<br>Grinding (if<br>surface must<br>be improved) | cleaning on<br>journal end<br>surface        |     |     |       |
| Technique                           | Pulse echo                                             | Pulse echo                     | Echo impul-<br>sion | Pulse echo             | Impulse<br>echo                                                | Pulse with 2 -4<br>MHz                                   | Pulse echo                                   |     |     |       |



| Probe              | Double                                                                           | Fased ar-<br>ray     | Single crys-<br>tal, emitter<br>and receiver  | 30 pcs.                                        | single                                                                            | single                                                                             | Rotating                                          |  |  |
|--------------------|----------------------------------------------------------------------------------|----------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|--|--|
| Vibration mode     | Longitudi-<br>nal wave from<br>the end and<br>transverse<br>wave from<br>surface | Trans-<br>verse wave | Longitu-<br>dinal and<br>transversal<br>waves | Lon-<br>gidudinal<br>and trans-<br>versal wave | Trans-<br>verse wave<br>from surface<br>and Longitu-<br>dinal wave if<br>required | Longitu-<br>dinal wave<br>from the end<br>and trans-<br>verse wave<br>from surface | Longi-<br>tudinal wave<br>from the<br>journal end |  |  |
| Transducer         | <tbd></tbd>                                                                      | <tbd></tbd>          | Straight<br>and angular /<br>2 to 4 MHz       | 2 MHz<br>and 4 MHz                             | WB 45 –<br>2<br>WB 60 –<br>2<br>B 4 S or<br>equal                                 | must fulfil<br>the require-<br>ments (e.g.<br>WB 45-2, B 4<br>S)                   | 3<br>transd. with<br>≠ angles                     |  |  |
| Coupling media     | Grease                                                                           | Water                | Mineral<br>oil                                | Water                                          | Ultragel<br>II or equal                                                           | gel,<br>grease                                                                     | Oil                                               |  |  |
| Calibration blocks | Axle, bloc                                                                       | Bloc<br>(K1)         | V1 block<br>/ ref. axle in<br>AC-Salzinnes    | Calibra-<br>tion bloc K1,<br>K2                | Axle,<br>bloc                                                                     | K1 (EN<br>12223)                                                                   | Axle<br>bloc                                      |  |  |
| Reference blocks   | Bloc<br>AFNOR B type                                                             | Axle                 | V1 block                                      | Refer-<br>ence axle                            | К 1, К 2                                                                          | VPIL 04,<br>Annex 27                                                               | /                                                 |  |  |
| Sensitivity        | < 2 mm                                                                           | 2mm                  | 2 mm                                          | <2mm                                           | < 1 mm                                                                            | < 2 mm<br>(roughly,<br>depending on<br>surface)                                    | < 3 mm                                            |  |  |



#### ANNEX 3.2.2.B: EVIC Sampling: statictical procedure and relevance

#### 1. Goal

The EVIC Sampling program was introduced to measure the efficiency of the EVIC program. It served the purpose to

- Prove that the EVIC catalogue is a valuable tool to identify and sort out axles that have potential NDT indications

- Prove that the EVIC program enhances the level of safety in freight operation

#### 2. Sampling

In order to achieve this goal, it was initially intended to sample 24,000 axles from the EVIC program. The sampling procedure for each axle consisted of the following steps:

- 1. the axle was subjected to the EVIC procedure and evaluated either "Ok", "C", or "NOk" (Not Ok)
- 2. the axle underwent a first NDT (Non Destructive Testing) in order to see if there was an indication
- 3. the axle was treated according to the usual maintenance rules. This treatment was independent from the outcome of step 2
- 4. the axle underwent a second NDT procedure

The EVIC result for each axle was then compared to the NDT result before and after treatment. Since the goal of the EVIC program was to sort out axles with potentially critical NDT indication, the attributes to be compared were the EVIC result and the NDT result after treatment. Sampled axles with a positive EVIC result ("Ok" or "C") and a negative NDT result after treatment were considered critical since they would remain in service even after an EVIC inspection. All other combinations were considered either good (EVIC positive, NDT positive) or uncritical (EVIC "NOK", meaning that the axle would have been taken out of service no matter the NDT result). The goal was to show via statistical analysis of the sampling that EVIC systematically sorts out critical axles and thus enhances safety by removing critical components from the system.

#### 3. Sample size

Initially it was planned to sample: 12,000 EVIC "NOk" axles and 12,000 EVIC "Ok" or EVIC "C" axles. By October 2012, a total of about 13,000 axles had been sampled and the distribution of the EVIC results can be viewed in the following table:

| EVIC result | Number sampled |
|-------------|----------------|
| Ok          | 5933           |
| С           | 4423           |
| NOk         | 2835           |
| Total       | 13191          |

In the process it showed that this overall sample size was big enough to achieve the above mentioned goals of the sampling program. Compared to the numbers shown in chapter 3.2, the difference (325) in the size of the sampled axles is linked to the scrapping or sorting out of axles before treatment in accordance with normal maintenance rules (for example: geometrical reasons, diameter of the seats, etc.)

#### 4. Method

The method of statistical analysis of the sample data consisted of calculating estimators for the contingent of axles with NDT after treatment indication ("NDT-positive" axles) within the EVIC catego-



ries as well as the determination of confidence intervals in order to make sure that the nature of the results of the sampling was systematic.

#### 5. Estimators

The estimators were simply the ratio of NDT-positive in the different EVIC categories. These are shown in the following table:

| EVIC category | Number of ax-<br>les in Sample | Number of ax-<br>les with NDT af-<br>ter treatment<br>not OK | Contingent es-<br>timator |
|---------------|--------------------------------|--------------------------------------------------------------|---------------------------|
| "Ok"          | 5933                           | 1                                                            | 0,017%                    |
| "C"           | 4423                           | 3                                                            | 0,068 %                   |
| "Ok" or "C"   | 10356                          | 4                                                            | 0,039 %                   |
| "Not Ok"      | 2835                           | 15                                                           | 0,529 %                   |
| Total         | 13191                          | 19                                                           | 0,144 %                   |

Table 1: EVIC sampling numbers by October 2012. The fourth column gives the estimators for the contingents of NDT-positive axles within the EVIC categories

#### 6. Confidence intervals

Since the sampling procedure by itself can only give an estimation of the true contingents of NDTpositive axles within the entire EVIC program (i.e. all axles in European freight traffic), it is crucial to obtain additional information of the quality of the estimators, i.e. in what range the true values lie. It is assumed that the true probability of finding a NDT-positive axle in an EVIC-category has the value P, e.g. for the probability of finding an NDT-positive axle in the set of all "EVIC Ok"-axles is  $P_{Ok,NDT-NOk}$ . In the sample the estimator for  $P_{Ok,NDT-NOk}$  is found to be 0 (Fehler! Verweisquelle konnte nicht gefunden werden., 4<sup>th</sup> column, first entry), since zero NDT-positive axles have been found in the sample. This does not mean that the true value is zero since it is possible that zero NDT-positive axles have been found purely by chance. For any true value of  $P_{Ok,NDT-NOk}$  the chance of finding any number of NDT-positive axles in a sample of size 5933 can be calculated.

Furthermore, the probability **prob(n,M)** of finding **n** NDT-positive axles in a sample sized **M** ( $0 \ge M \ge N$ ), when the true contingent is **P**, obeys a binomial distribution, i.e.

$$prob(n,M) = \binom{M}{n} P^n \mathbf{i} - \sum_{n=1}^{M-1}$$

The confidence interval for an estimator then describes the values of the true parameter **P** for which the outcome of the sample is plausible, i.e. the values of **P** for which it is sufficiently probable that the obtained sample comes out. The 95% confidence interval then basically means that it can be said that one is 95% sure that the real value of **P** lies in the attributed confidence-interval. The confidence-intervals for the contingent-estimators for the EVIC-sampling are given in

| EVIC<br>category | Number<br>of axles<br>in Sam-<br>ple | Number of<br>axles with<br>NDT after<br>treatment<br>not OK | Contingent<br>estimator | 95% Confi-<br>dence-<br>interval | 99% confidence<br>interval |
|------------------|--------------------------------------|-------------------------------------------------------------|-------------------------|----------------------------------|----------------------------|
| "Ok"             | 5933                                 | 1                                                           | 0,017%                  | 0,0009-0,095<br>%                | 0,0002-0,143 %             |
| "C"              | 4423                                 | 3                                                           | 0,068 %                 | 0,0234-<br>0,199%                | 0,017-0,268 %              |



| "Ok" or<br>"C" | 10356 | 4  | 0,039 % | 0,015-0,099 % | 0,011-0,13 %   |
|----------------|-------|----|---------|---------------|----------------|
| "Not Ok"       | 2835  | 15 | 0,529 % | 0,324-0,87 %  | 0,275-1,01 %   |
| Total          | 13191 | 19 | 0,144 % | 0,092-0,224 % | 0,08 – 0,258 % |

Table 2: Estimators and confidence intervals for the EVIC sampling up to October 2012.

#### 7. Interpretation

The results for the contingent estimators and the appropriate confidence intervals show that The EVIC program is *systematic* in the sense that the probability to find an NDT-positive axle in the "EVIC NOK" set is higher than the appropriate probability to find an NDT-positive axle that has not been sorted out by EVIC (i.e. "EVIC OK" or "EVIC C")

The described positive effect of EVIC is **statistically significant to a confidence level of 99 %**, i.e. the 99 % confidence intervals do not overlap.

The analysis shows that EVIC is an efficient tool to sort out NDT-positive axles and thus enhances the safety of freight traffic in Europe.



#### ANNEX 3.2.3: Stress-concentration by centre punch mark

During the course of the EVIC investigation, it was found that a significant number of wheelset axles from different manufacturers have centre punch markings on the shaft.

Centre punch marks of this kind had been commonly used for marking the centre of the shaft, in order to be able to adjust as well as possible the wheels symmetries to the centre that are important when pressing on the wheels in new constructions and when replacing the wheels in the wheelset-maintenance. They had been applied to the axles of locomotive wheelsets, as well as to those of passenger train carriages and goods wagons.

A fracture of a wheelset axle as a result of these "punch notches" has never been observed or known.

Within the context of the discussion of the impacts of surface effects / flaws / corrosion etc. on the fatigue strength of the wheelset shaft also the effect of this centre punch mark has been considered.

The following questions were thereby to be answered:

• As a "surface defect", how does the centre punch mark act on the strength and/or the fatigue limit of the shaft at the location of the punch?

- Is there any risk to the fatigue strength of the wheelset axle as a result of the centre punch?
- What measures would be necessary or practical for the wheelset axles that are already in operation?

In order to answer these questions an investigation of the strength of wheelset axles was carried out, as a comparison, with and without a centre punch mark, and was then assessed on the basis of the tensions in relation to the respective fatigue limit. The important aspects/results of these strength considerations will be presented in the following, and conclusions will be drawn from them regarding the answers to the above questions.

#### Strength calculation

(example of a shaft for 25 t wheelset load, steel A1N) - Estimation of the fatigue limits for bending stress





Centre Punch Marking of the shaft centre (Section A-A) by

In the case of a **smooth rod** (corresponding wheelset axle, shaft) made from steel **A1N**, the **fatigue limit**  $\sigma_c$  according to EN 13103 is as follows:



The following applies:  $\sigma_{Ct} = 0.48 \times R_m = 0.48 \times 600 \text{ MPa} = 288 \text{ MPa}$ and the following fatigue limit for the smooth wheelset shaft thereby results for the smooth test rod – call the wheelset axle –

#### $\sigma_c$ = 200 MPa

(with "zero-notch")

There are no standardised strength-reducing values for the determination and/or reduction of the respective **fatigue limit** depending on the type of impression for the case of the **"cone impression"** notch in the centre of the otherwise smooth shaft.

Starting from the fatigue limit for the smooth shaft  $\sigma_c$  = 200 MPa (see above), the impact of a known crosshole is used as a first approximation of the centre punch mark.

With the known coefficients and influencing factors for cross-holes in shafts, the reduced fatigue limit of the shaft with a through cross-hole Ø 3 mm can be estimated according to Serensen and Lejkin, as well as Siebel and Stieler, with

Fatigue limit with cross-hole  $\sigma_{col}^*$  = 99 MPa

The respective impact of the notch: cone impression in relation to the notch: cross-hole – with the otherwise identical shaft diameter and the same shaft bending stress– can be directly compared and assessed from the resulting stresses.

Notch I cross-hole Notch II Centre punch mark, cone impression

The resulting local stresses (maximum equivalent stress and maximum principal stress) of the associated **notches I, II** will be determined through the method of finite elements and will be set in relation to a shaft with "zero-notch".

Notch I (cross-hole)

Maximum equivalent stress σ<sub>HMHmax I</sub> = 265 Mpa Maximum principle stress  $\sigma_{1max I}$  = 295 Mpa







In this case of the Notch I "cross-hole", the associated fatigue limit  $\sigma_{col}^* = 99 \text{ MPa}$ 

has already been determined according to Serensen and Lejkin, and to Siebel and Stieler.

Notch II (centre punch mark, cone impression) Maximum equivalent stress  $\sigma_{\text{HMHmax II}}$  = 200 Mpa

Maximum principal stress σ<sub>1max II</sub> = 212 Mpa



By comparing the stresses of the standard notch cross-hole and the peak stresses of notch II (cone impression), the correction factor k<sub>kII</sub> is determined for the fatigue limit of notch II (cone impression). The fatigue limit for the centre punch mark and/or notch II (cone impression) is derived from this with

or

$$k_{kII} = \sigma_{HMHmaxI} / \sigma_{HMHmaxII} = 265 / 200 = 1.32$$

$$k_{kll}$$
 =  $\sigma_{1max l} / \sigma_{1max ll}$  = 295 / 212 = 1.39

The following then applies for the fatigue limit  $\sigma_{coll}$  for the shaft with centre punch mark:

$$\sigma_{\text{Co II}}^{*}$$
 =  $k_{\text{kII}} \times \sigma_{\text{Co}}^{*}$  = 1.32 x 99 MPa = 130 MPa

In this case of notch II (cone impression) the

fatigue limit 
$$\sigma_{coll}^* = 130 \text{ MPa}$$

is estimated.



The following applies for the case of the **smooth undisturbed wheelset axle**:

"Zero-notch" Maximum equivalent stress σ<sub>HMHmax "0"</sub> = 130 Mpa

Maximum principal stress  $\sigma_{1max"0"}$  = 130 MPa





The fatigue limit for the smooth shaft, the "zero-notch" thereby results

$$k_{k^{"0''}} = \sigma_{HMHmax I} / \sigma_{HMHmax ''0''} = 265 / 130 = 2.03$$

or

$$k_{k''0'}$$
 =  $\sigma_{1max I}$  /  $\sigma_{1max ''0'}$  = 295 / 130 = 2.27



The following then applies for the fatigue limit  $\sigma_{co \parallel}$  for the smooth shaft with "zero-notch":

=  $k_{k''0''} \times \sigma_{co}^{*}$  = 2.03 x 99 MPa = 201 MPa =  $\sigma_{c}$ 

The fatigue limit  $\sigma_{\text{Co"0"}}^{*}$  = **201 MPa** 

was estimated for this case of the "**zero-notch**" (estimated in a similar way to the cone impression). The fatigue limit  $\sigma_{co"0"}^*$  estimated in this manner corresponds to the fatigue limit  $\sigma_c = 200$  MPa according to EN 13103, see above

In this way, the procedure selected here, starting from the EN 13103 for the smooth shaft and then determining the fatigue limit of the shaft with cross-hole, and then going back to the fatigue limit at Notch II, cone impression, at the known cross-hole through the comparison of the maximum equivalent stresses and/or the maximum principal stresses determined by the FEM calculation, is thereby confirmed.

#### Conclusions

# • As a "surface defect", how does the centre punch mark act on the strength and/or the fatigue limit of the shaft at the location of the centre punch?

The **fatigue limit**  $\sigma_c$  = 200 MPa according to EN 13103 for the smooth, undisturbed shaft will be reduced by the stamping as follows:

The fatigue limit  $\sigma_{col}^*$  for the cross-hole (notch I) has been calculated as:  $\sigma_{col}^* = 99 \text{ MPa}$ 

The fatigue limit  $\sigma_{coll}^*$  for the **centre punch mark, cone impression (notch II)** has been calculated as:  $\sigma_{coll}^* = 130 \text{ MPa}$ 

The fatigue limit  $\sigma_{co"0"}^{*}$  for the **smooth wheelset axle**, "zero-notch" has been calculated as:  $\sigma_{co"0"}^{*}$  = 201 Mpa

or has been determined from EN 13103 as

#### σ<sub>c</sub> = 200 MPa

#### • Is there any risk to the fatigue strength of the wheelset axle as a result of the centre punch?

The strength analysis of the wheelset axle shaft, with  $\emptyset$  173 mm and maximum, i.e. worst case stress of 25 t wheelset load, indicates a stress level in centre of the shaft of 129 MPa. The cone-shaped centre punch mark (notch II) is thereby at the limits of the long-term strength, i.e. the fatigue limit, but can be tolerated.

#### • What measures would be necessary or practical for the wheelset axles that are already in operation?

It is **recommended** to level out any local stamps / centre punch marks, **i.e. to grind them out**, in order to recreate a greater separation from the fatigue limit.

This recommendation is thereby conclusively proved / confirmed here by the impact on the fatigue limit at the location of the centre punch mark in the centre of the shaft.



### Strength calculation with levelled centre punch marks (and similar impressions)

Using the FEM calculation, the

#### Maximum equivalent stress

 $\sigma_{HMHmax Mul} = 140 Mpa$ 

at the leveled location is calculated as:

# 



Maximum principal stress



The fatigue limit for the oval, grinded out area (depth = approx 2 mm and diameter  $d_x = 35$  mm,  $d_y = 70$  mm ) thereby results as  $k_{kMul} = \sigma_{HMHmax I} / \sigma_{HMHmax Mul} = 265 / 140 = 1.89$ 

or

$$k_{kMul}$$
'=  $\sigma_{1max l}$  /  $\sigma_{1max Mul}$  = 295 / 139 = 2.12

The following then applies for the fatigue limit  $\sigma_{\text{Co Mul}}^*$  for the shaft with cavitation:  $\sigma_{\text{Co Mul}}^* = k_{\text{kMul}} \cdot \sigma_{\text{Co}}^* = 1.89 \times 99 \text{ MPa} = 189 \text{ MPa}$ 



The

fatigue limit  $\sigma_{co III}$  = 189 MPa

is calculated for this case of the levelled / grinded out area.

The fatigue limit of the centre punch marks notches II and III of

130 and 135 MPa

are thereby increased at 189 MPa.

Levelling by grinding out is a recognised standard procedure in the maintenance of wheelset axles for the removal of local surface damages. The local grinding out of the centre punch impressions can be carried out within the context of the normal wheelset maintenance or within the framework of the EVIC initiative. As a result of the levelling, the fatigue limit is considerably improved compared to the presence of centre punch impressions.

As an alternative turning down the shaft with  $\Delta D = 4$  mm on a lathe is possible as a further measure for the removal of 2mm deep notches. The fatigue limit of the wheelset axle with a grinded out center punch mark and with Ø 173 mm "remaining diameter" is approx 7% higher than the turned shaft with Ø 169 mm remaining diameter, which benefits the complete shaft.

|    | Local grinding out in order to | remove local defects is | preferable in every | r case against the turning down | of the shaft with it's high | ner reduction |
|----|--------------------------------|-------------------------|---------------------|---------------------------------|-----------------------------|---------------|
| of | diameter                       | and                     | the                 | corresponding                   | strength                    | loss.         |



ANNEX 3.3: ECCM

# European Common Criteria for Maintenance (ECCM) "vertical version" of freight wagon axles

to be applied in wheelset axle maintenance

Joint Sector Group for ERA Task Force on wagon/axle maintenance Lille, 22<sup>nd</sup> June 2010



# ECCM results summary (1)

## EU-wide harmonised requirements for...

## Light Wagon Maintenance

- Visual checks of the axle surface (EU-harmonised) according EVIC catalogue
- Corrosive environments: EVIC "short" (4y) and more severe EVIC criteria (only cases A, B)

## Heavy Wagon Maintenance (revision, major overhaul)

- Remove all axles with EVIC defect cases A, B, handover to wheelset maintenance (medium or heavy)
- Remove all axles with EVIC defect cases C (replace or repair)

## Higher axle maintenance levels (1)

- Axle surface status
  - Treatment of local and severe defects (according UIC category 4)
  - Treatment of large and heavily corroded areas, strongly and uniformly pitted surface
- Non-Destructive Testing (NDT)

• Complete NDT on all axle sections in the "medium maintenance" level (off-vehicle maintenance level w/o changing wheels). Required migration is ongoing

• Complete MT on the total axle surface in the highest maintenance level



## **ECCM results summary (2)**

EU-wide harmonised requirements for...

## Higher axle maintenance levels (2)

- Wear limits
  - Min. wheel seat diameter (all UIC Type A axles) limited to 182 mm when operated at 20t

## Operation

- Unified rules for high performance axle operation (all UIC axle types)
- Continued operation of painted and unpainted axles under today's existing service and appropriate maintenance conditions (including Task Force results)

## Traceability

- European EVIC logging
- European Wheelset Traceability + measures resulting from lack of traceability



# Continued high performance operation (increased load limit)

| Limit for high pe                                                  | erformance operation                                 | Limited mileage between medium or heavy maintenance<br>(with and w/o changing wheels)                                                                  | Corresponding mainte-<br>nance Action            |  |  |
|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| type A-I; A-II; A-III(1)                                           | 20 t                                                 | > 20 t not permitted                                                                                                                                   |                                                  |  |  |
| Axle load exceeding d<br>type A-III (2)                            | <b>lesign load &lt;= 5%</b><br>> 20,6 t up to 21 t   | - 400.000 km<br>- ECM task is to define the equivalent time limit                                                                                      | NDT with<br>mounted wheels<br>- UT at wheel seat |  |  |
|                                                                    | <u>Р</u>                                             | arc SUR                                                                                                                                                | - UT or MT at transition radii                   |  |  |
| Axle load exceeding of type A-III (2)                              | lesign load >5% ->10%<br>> 21 t up to 22 t           | - 200.000 km<br>- ECM task is to define the equivalent time limit                                                                                      |                                                  |  |  |
| For type A axles ope<br>standard maintenance pla<br>20t operation: | erated at 21t axle load in and re-classified back to | re-integrate axle in standard maintenance plan with UT of the wheel seat at the next reprofi<br>ing, medium or heavy maintenance level of the wheelset |                                                  |  |  |
| type B                                                             | > 22,5 t up to 23,5 t                                | Inside design limits but use to be checked case by case in accordance with wagon parameters and permitted infrastruc-<br>ture axle load                | no special                                       |  |  |
| type B                                                             | > 23,5 t                                             | not applied                                                                                                                                            |                                                  |  |  |



## Limits for axle maintenance

## Service limit(s)

- shall only be based on condition (wear limits, **not age related**) because basic concept in dimensioning has always been the infinite life approach
- Age is not a clear indication for the status of an item (but the undergone load conditions)
- This is supported by the return of experience of the existing maintenance and monitoring systems (NDT, surface treatment,...). After maintenance/overhaul, the wheelset/axle is able to continue its operation in the foreseen maintenance plan.
- This is supported further by the Visual Inspection program with following heavy maintenance now to apply sorting out even quicker axles from operation to appropriate treatment



## Surface status to be treated in medium and heavy maintenance: references

## 1) Local and severe defects (according UIC category 4)







## Surface status to be treated in medium and heavy maintenance: references

1) Local and severe defects (according UIC category 4)




1) Local and severe defects (according UIC category 4)





2) Large and heavily corroded areas, strongly and uniformly pitted surface





(link to prescriptions in EVIC:"to be treated in next heavy maintenance")



























2) Status to be treated in transition radii and abutment area (examples)





abutment

abutment



# For "medium maintenance" levels (without changing wheels, combined with bearing overhaul):

• If the surface status under coating of the axle is not clear: remove coating as far as necessary

• The surface status according to the given reference pictures must be treated or withdrawn in order to prevent potential cracks from propagation:

1) Local and severe defects (according UIC category 4)

2) Large and heavily corroded areas, strongly and uniformly pitted surface

• The treatment can be turning, grinding, blasting,... with subsequent NDT (according to ECCM)

#### The same criteria have to be applied also in the level with dismounted wheels

#### Measures resulting from lack of traceability

1. If in a wheelset maintenance level (with axle boxes opened) one or two of the following informations for an individual wheelset is/are missing:

- manufacturer
- manufacturing date
- manufacturing standard

the ECM has to decide according to its experience with its axle population about the measures to be applied. At minimum, the axle has to be subject to immediate NDT (only once).

(The timeframe is in accordance with the European Wheelset Traceability solution).

If no indication at all is given, the axle must be scrapped.

2. If the existence of the following data for an individual wheelset cannot be proven on paper, databases, data band,.. (detected during the acquisition according to the European Wheelset Traceability scheme or on special request):

- Workshop of last maintenance activity
- date of last maintenance activity
- type of last maintenance activity



then the axle has to be subject to immediate NDT (only once).

NDT for the axle must be performed in all cases 1. and 2. according to ECCM criteria.

3. The ECM/keeper has to decide according to its experience with the operational conditions of the axles if the non traceable axle has been used in accordance with its design or with high performance parameters.

If this is not identifiable, the most severe NDT conditions according to the "ECCM Continued High Performance Operation" rules must be applied in the future maintenance of the axle (see this document - *ECCM final, 5. special regimes*).



ANNEX 3.4.A.: EUROPEAN WHEELSET TRACEABILITY (EWT) FOR FREIGHT WAGON AXLES Implementation Guide V1.5\_EN

## **IMPLEMENTATION GUIDE**

# FOR THE

## EUROPEAN WHEELSET TRACEABILITY (EWT) FOR FREIGHT WAGON AXLES

Joint Sector Group for ERA Task Force on wagon/axle maintenance

#### Table of Contents

| 1   | Definitions                                  |
|-----|----------------------------------------------|
| 2   | Reasons for the EWT                          |
| 3   | Objectives of the EWT                        |
| 4   | Timeframes                                   |
| 5   | Boundary conditions                          |
| 6   | The tasks of the Joint EWT bodies            |
| 7   | The tasks of the keeper                      |
| 8   | The tasks of the workshop                    |
| 9   | Data to be collected                         |
| 9.1 | Wheelset in general                          |
| 9.2 | Wheelset axle                                |
| 9.3 | Wheels                                       |
| 9.4 | Bearings                                     |
| 9.5 | Medium and Heavy Wheelset maintenance        |
| 9.6 | Vehicle in which the wheelset is built in    |
| 9.7 | Irregularities                               |
| 10  | Measures resulting from lack of traceability |

Brussels, 26.07.2010



## 1 Definitions



#### Key

- 1 axle
- 2 monobloc wheel
- 3 wheel centre
- 4 tyre (if)
- 5 retaining ring (if)
- 6 axle box with bearing
- ECCM European Common Criteria for Maintenance (of wheelset axles)
- EWT European Wheelset Traceability
- ECM Entity in Charge of Maintenance
- GCU General Contract of Use (CUU, AVV)
- NDT Non Destructive Testing
- NSA National Safety Authority



## 2Reasons for the EWT

European wagons keepers have developed since many decades a maintenance system assuring a safety which allowed to become the safest land freight transport.

However, after the tragic accident in Viareggio,

- the European Railway Agency
- the European NSAs and
- the Joint Rail Freight Sector (CER, ERFA, UIP, UIRR, UNIFE)

agreed to investigate in the frame of the ERA Task Force the possibilities for a European approach for harmonised criteria and immediate and mid-term measures ascertaining an even enhanced railway safety in an appropriate way.

The Joint Sector Program worked out in the ERA Task Force was fully adopted in Viareggio in december 2009. The European Action Program consists of a:

-Visual Inspection of the European wheelset/axle population (according to EVIC) -more in-depth investigation of samples of wheelsets from defined operating areas -European-wide implementation of systematic traceability of wheelset maintenance (EWT)

The Joint Sector program was approved by all EU authorities and NSAs. It is up to the Sector to implement now what has been decided. The implementation of the program (here especially: EWT) is done as a self-commitment in the Sector Association's companies in fulfillment of the Sector's Safety responsibility. There is no legal obligation but a clear commitment of the Sector to the European and National Authorities to implement the Action program. The European Wheelset Traceability will be integrated in the updated version of EN 15313.

The European NSAs are invited to audit the execution of the decided measures.

## **3Objectives of the EWT**

To improve and to harmonize traceability further, and to reduce the time for analyzing in case of incidents, the sector will collect the data listed in this document.

The aim of the EWT is to:

 $\sqrt{}$  trace wheelsets in case of incidents and to reduce the risk for further incidents due to similar reasons.

 $\sqrt{}$  trace in case of incidents the service conditions of a wheelset in the past and also its core item, the axle.

 $\sqrt{}$  trace the applied maintenance regime and which non destructive tests have been done on the wheelset.



In case wheelset defects will be detected, the keeper is able to select concerned wheelsets by the aid of EWT. This allows the keepers and NSA's to carry out appropriate measures.

## 4Timeframes

From August 2010 onwards, the sector will begin to collect the data listed below:

 $\sqrt{}$  The data of the group "a" have to be collected at the first time the wheelset enters a suitable workshop (the "suitable" workshop will be defined by the ECM) and at the latest at the next reprofiling maintenance level.

 $\sqrt{}$  The data of the group "b" have to be collected at latest at the next maintenance of the wheelset with overhaul of the bearing.

 $\sqrt{}$  The data of the group "c" have to be collected at latest at the next mounting and dismounting of the wheelset from the wagon.

 $\sqrt{}$  For the data of the groups "a" and "b" which couldn't be determined, the notice "not available" has to be entered. Measures to be taken in this case: according to the adopted ECCM (see chapter 10; later according to EN 15313).

The collection of the data per wheelset has at latest to be completed within the next maintenance with overhaul of the bearing.

For new wheelsets, the collection of all data group a, b, c must start from 08/2010 onwards

and before the wheelset is in service.

The data must be recorded in a filterable electronic system at **latest from 01.01.2012 onwards.** 

## 5 Boundary conditions

I. Collected maintenance dynamic data of category "I" of the wheelset must be stored as minimum until the next maintenance operation on the respective component (e. g. bearing overhaul to bearing overhaul).

II. Data of the category "II" have to be stored over the lifetime of the respective compo-

nent. III. Data of the category "III" have to be stored over the lifetime of the wheelset.

The current keeper has the responsibility to obtain the data from the previous keeper or the manufacturer and store and update the data until the change of the keeper according to the categories.



The existing wheelset data have to be given to the new keeper in case of change of the keeper.

The EWT doesn't replace existing maintenance rules. The data listed in the EWT are the minimum of data to be recorded. It is up to the Entity in Charge of Maintenance (ECM) to decide if it is necessary to record additional data.

## 6 The tasks of the Joint EWT bodies

**The Joint EWT body** consists of members nominated by the Railway Associations UIP, CER and ERFA per European country (see table) and is responsible for the issues regarding the EWT in its respective EU Member State (plus Switzerland).

The Joint EWT body will:

- organize the translation of the EWT in the national language
- issue the translated EWT documents to the keepers
- manage all information of all concerned parties (workshops, keepers,...)

#### The Joint EWT bodies per country:

| Coun-       | La     | UIP / Rivière              | CER / Schachner            | ERFA / Heiming       |
|-------------|--------|----------------------------|----------------------------|----------------------|
|             |        | David Tillier AFWP         | Lafaix SNCF ber-           |                      |
| France      | FR     |                            | nard.lafaix@sncf.fr        |                      |
|             |        | dtillier@ermewa.fr         | evic.france@sncf.fr        |                      |
|             |        | Olga Wisniewska VAP        | Bernet SBB                 | Dr. Johannes Nicolin |
| Switzerland |        |                            | thomas.bernet@sbbcargo.com | AAE                  |
|             | 11     | tech@cargorai              | evic.ch@sbb.ch             |                      |
|             |        | Jürgen Tuscher VPI tu-     | Manfred Berg-              | Mallikat             |
| Germany     | DE     | scher@vpihamburg.de        | mann DB manf-              | VDV                  |
|             |        | evic.germany@vpihamburg.de | red.bergmann@              |                      |
|             |        | Mauro Pacella ASSO-        | Paolo Fusar-               | D.ssa Maria Fran-    |
| Italy       | IT     | FERR Mau-                  | poli TI                    | cesca                |
| ,           |        | ro.pacella@assoferr.it     | p.fusarpoli@trenital       | Ricchiuto ric-       |
| Nothorlanda | N      | Don van                    | Paul Clews DB SR           |                      |
| Nethenanus  |        | Riel                       | NL                         |                      |
|             |        |                            | Krzysztof Buszka           | Dr. Ireneusz Gójski  |
|             |        |                            | PKP                        | IGTL                 |
| Poland      | POL    |                            | k.buszka@pkp-              |                      |
|             |        |                            | cargo.pl                   | i-                   |
|             |        |                            | Miroslaw Szczelina Rail-   | gojski@aster.pl      |
|             |        | Günter Heindl              | Andreas Schachner          |                      |
| Austria     | DE     | VPI                        | ÖBB                        |                      |
|             |        | office@vpira               | andre-                     |                      |
|             |        | Vincent                    | Maenhout                   | Monika               |
| Belgium     | FR, NL | Bourgois                   | SNCB                       | Heiming              |
| -           |        | _                          | etienne.maenhout@b-        | -                    |









| r               | 1   |                          |                              |                    |
|-----------------|-----|--------------------------|------------------------------|--------------------|
|                 |     | Gyozo Czito              | Miklos Kremer                |                    |
| Hungary         | HON | nagyd@pultrans.hu        | MAV                          |                    |
| . iangan y      |     |                          | kre-                         |                    |
|                 |     | evic.ungary@pultrans     | merm@mav.hu                  |                    |
| Luxombourg      |     |                          | Gaston Zens gas-             |                    |
| Luxembourg      |     |                          | ton.zens@cflcargo.lu         |                    |
|                 |     | Geoffrey Pratt geof-     | Paul Antcliff                | Lord Tony Berkeley |
| United Kingdom  | EN  | frey.pratt@btconnect.com | paul.antcliff@dbschenker.com | tony@rfg.org.uk    |
|                 |     |                          | Damien Lambert IrishRail     | Lord Tony Berkeley |
| Ireland         | EN  |                          | damien.lambert@irishrail.ie  | tonv@rfa.ora.uk    |
|                 |     | Martin Vosta sekre-      | Martin Vosta sekre-          |                    |
| Czech Republic  | CZ  | tariat@sdruzeni-spy.cz   | tariat@sdruzeni-sny.cz       |                    |
|                 |     | laroslav Miklanek        | Roman                        |                    |
| Slovak Republic |     |                          | Sklenar                      |                    |
|                 |     | 2010020103.31            |                              |                    |
| Latvia          | LAT |                          | doinio zvonoro@ldz.lv        |                    |
|                 |     |                          |                              | Edite Osnasi       |
|                 |     |                          | Kęstutis Rakauskas           | Edita Gerasi-      |
| Lithuania       | LII |                          | K.rakauskas@litrail.it       | moviene            |
|                 |     |                          |                              | e.gerasimoviene    |
| Romania         | ROM | Nucu Morar               | Gheorghe Avram               | Gheorghe Av-       |
| rtornama        |     | nmorar@ermewa.ro         | gheorghe.avram@irsgroup.eu   | ram                |
|                 |     | Alfonso                  | Javier Fernández-            |                    |
| Spain           |     | Ynigo                    | Pello jfpello@renfe.es       |                    |
| Spain           |     |                          | Ignacio Hernández            |                    |
|                 |     | Al-                      | Vallhonrat                   |                    |
|                 |     | Staffan                  |                              | (Stephan Aström    |
| Sweden          | SWE | Rittgard                 |                              | Steph-             |
|                 |     |                          |                              | an.astrom@         |
|                 |     |                          | Viktor Sin-                  |                    |
| Slovenia        | SLO |                          | kovec vik-                   |                    |
|                 |     |                          | tor sinkovec                 |                    |
|                 | 1   |                          | Paulo Jorge de Oliveira      |                    |
| Portugal        | POR |                          | nioliveira@cncarga.nt        |                    |
|                 |     |                          | Benny Snangsborg             |                    |
| Denmark         | DK  |                          | Benny Spangsborg             |                    |
| Denmark         |     |                          | Ødbschenker.com              |                    |
|                 | 1   |                          |                              |                    |

The reference is the English language version. All documents (english and translated) will also be published officially on **xxx website** (to be defined by the Joint Sector Group)

The Joint EWT body per country delivers the EWT document in the national language

**The Joint EWT body** per country issues the EWT document to the countries' keepers (and, for information, to the RUs)

**The keepers** (ordering the EWT from the workshops) hand over the documents to the executing workshops.

The executing workshop adds required national and local working rules as well as all supporting further instructions to the EWT docs on/for application on the workshop level.



## 7 The tasks of the keeper

The keeper is responsible to collect, update and keep the data from the workshops **from** 08/2010 onwards.

From 01.01.2012 onwards the keeper has to store the data in a filterable electronic system.

The execution of the EWT must be **mandated to the contracted workshops by the keepers.** 

The keeper must take over the costs for executing the EWT.

In case of a replacement according to GCU, the executing workshop has to send the "**Form H**<sub>R</sub>" according to the GCU with the information of the wagon number and the wheelset number of the wheelset to be replaced to the keeper.

## 8 The tasks of the workshop

The workshop has to collect the data.

The workshop has to submit the collected data to the keeper.

Any workshop (light or heavy maintenance) which executes a wheelset change must collect the data of the group "c" and submit them the keeper.

If the workshop is a heavy maintenance workshop which executes a major maintenance / overhaul level on a wheelset, additionally the data of the group "a" and group "b" have to be collected and submitted to the keeper.

## 9Data to be collected

#### 9.1 Wheelset in general

| Ν | Tim | Designation             | Remark | cate- |
|---|-----|-------------------------|--------|-------|
| 0 | e-  |                         |        | gory  |
| 1 | а   | Wheelset number         |        | Ι     |
| 2 | а   | Wheelset design type or |        | Ι     |
|   |     | alternative designation |        | II    |









| 3 | 9 | $\mathbf{Previous keeper(s)(ECM)}$ | if applicable (if the keeper bas                   | T       |
|---|---|------------------------------------|----------------------------------------------------|---------|
| 5 | a | Trevious Reeper(s) (Lewi)          | changed)                                           | I       |
|   |   |                                    | Data has to be stored from                         | 11      |
|   |   |                                    | Data has to be stoled from                         |         |
|   |   |                                    | the last change of the keeper                      |         |
|   |   |                                    | onwards.                                           |         |
|   |   |                                    |                                                    |         |
|   |   |                                    | Remark: Current keeper of                          |         |
|   |   |                                    | the wheelset is the keeper of                      |         |
|   |   |                                    | the wagon (see number 38)                          |         |
| 4 | a | Certificate number and noti-       |                                                    | Ι       |
|   |   | fied                               | if available                                       | II      |
|   |   | body from EC-                      |                                                    |         |
|   |   | declaration of conformity          |                                                    |         |
|   |   | (TSI compliant wheelsets)          |                                                    |         |
|   |   |                                    |                                                    |         |
|   |   | Homologation number and            | if available                                       |         |
|   |   | authorising or certifying body     |                                                    |         |
| 5 | а | Maximum authorised axle            |                                                    | Ι       |
| - |   | load                               |                                                    | II      |
| 6 | а | assembler of wheels                | <ul> <li>for existing wheelsets already</li> </ul> | I       |
| Ũ |   | (manufacturer if first assem-      | in service: if available                           | П       |
|   |   | hlv)                               | • for now whoelsots: manda                         |         |
|   |   | Data of first assambly of          | · Ioi new wheelsets. manda-                        | T       |
| / | a | Date of first assembly of          | • for existing wheelsets already                   | I<br>TT |
|   |   |                                    | in service: if available                           | 11      |
|   |   | (month/ year)                      | • for new wheelsets: manda-                        |         |
| 8 | a | Date when wheelset is taken        |                                                    | Ι       |
|   |   | out                                |                                                    | II      |
|   |   | of keepers' fleet                  |                                                    |         |



## 9.2 Wheelset axle

| Ν      | Tim | Designation                                                                                        | Remark                                                                                                                                                                                                                           | cate-  |
|--------|-----|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 0      | e-  |                                                                                                    |                                                                                                                                                                                                                                  | gory   |
| 9      | a   | Wheelset axle serial number                                                                        | if available                                                                                                                                                                                                                     | I      |
| 1      | а   | Wheelset axle design type or                                                                       |                                                                                                                                                                                                                                  | I      |
| 0      | u   | alternative designation                                                                            |                                                                                                                                                                                                                                  | II     |
| 1      | a   | Certificate number and notified<br>body from EC-declaration of<br>conformity (TSI compliant axles) | if available                                                                                                                                                                                                                     | I      |
|        |     | Homologation number and<br>authorising or certifying body<br>(other axles)                         | if available                                                                                                                                                                                                                     |        |
| 1      | b   | Manufacturer                                                                                       | <ul> <li>for existing wheelsets already<br/>in service: if available</li> <li>for new wheelsets:<br/>mandatory</li> </ul>                                                                                                        | I      |
| 1      | b   | Manufacturing date (month/<br>year)                                                                | <ul> <li>for existing wheelsets already<br/>in service: if available</li> <li>for new wheelsets:<br/>mandatory</li> </ul>                                                                                                        | I      |
| 1<br>4 | b   | Number of cast iron                                                                                | <ul> <li>for existing wheelsets already<br/>in service: if available</li> <li>for new wheelsets:<br/>mandatory</li> </ul>                                                                                                        | I      |
| 1<br>5 | b   | grade of steel (state of heat treatment)                                                           | <ul> <li>for existing wheelsets already<br/>in service: if available</li> <li>for new wheelsets:<br/>mandatory</li> </ul>                                                                                                        | I      |
| 1<br>6 | а   | Maximum permissible axle load                                                                      |                                                                                                                                                                                                                                  | I<br>I |
| 1 7    | b   | Manufacturing standard of the axle                                                                 | <ul> <li>for existing wheelsets already<br/>in service: if available</li> <li>for new wheelsets:<br/>mandatory</li> <li>The manufacturing standard<br/>is directly related to the manu-<br/>facturing date: (UIC: EN)</li> </ul> | I      |



## 9.3 Wheels

| No | Time- | Designation                           | Remark                                           | cate- |
|----|-------|---------------------------------------|--------------------------------------------------|-------|
|    | fra   |                                       |                                                  | gory  |
|    | 1 A   | Design type or alternative            |                                                  | Ι     |
| 8  |       | designation                           |                                                  | II    |
| No | Time- | Designation                           | Remark                                           | cate- |
|    | fra   |                                       |                                                  | gory  |
|    | 1 A   | Tyred wheels                          | Yes/ No                                          | Ι     |
|    | 2 A   | Certificate number and notified       |                                                  | Ι     |
| 0  |       | body from EC-declaration of con-      | if available                                     | Ι     |
|    |       | formity (TSI compliant wheels)        |                                                  |       |
|    |       |                                       |                                                  |       |
|    |       | Homologation number and authoris-     |                                                  |       |
|    |       | ing or certifying body (other wheels) | if available                                     |       |
| ,  | 2 B   | Manufacturer                          | • for existing wheelsets already in              | I     |
| 1  |       |                                       | service: if available                            | I     |
| -  |       |                                       | <ul> <li>for new wheelsets: mandatory</li> </ul> | -     |
|    | 2 B   | Manufacturing date (month/year)       | • for avisting wheelsets already in              | I     |
| 2  |       | Manufacturing date (month) year)      | service: if available                            | I     |
| _  |       |                                       | <ul> <li>for new wheelsets: mandatory</li> </ul> | -     |
| ,  | ) B   | grade of steel (state of heat         | • for existing wheelsets elready in              | I     |
| 3  |       | treatment)                            | service: if available                            | Ĭ     |
| 5  |       | (reatification)                       | • for new wheelsets: mandatory                   | 1     |
|    |       | Number of east iron                   | • for avisting wheelsets, included y             | T     |
|    | 2 D   |                                       | • for existing wheelsets arready in              | I I   |
| 7  |       |                                       | for now wheelests: mondatory                     | 1     |
| ,  |       | Maximum authorized axle lead          | - Tor new wheelsets: mandatory                   | т     |
| 5  | 4 A   | (recording the wheel)                 |                                                  |       |
| 3  |       | (regarding the wheer)                 |                                                  | 1     |

## 9.4 Bearings

| No | Time- | Designation                    | Remark | cate- |
|----|-------|--------------------------------|--------|-------|
|    | fra   |                                |        | gory  |
| 2  | a     | Design type of axle box or     |        | II    |
| 6  |       | alternative designation        |        |       |
| 2  | b     | Bearing geometrical type (e.g. |        | II    |
| 7  |       | cylinder roller bearing, ball  |        |       |
|    |       | joint bearing etc)             |        |       |
| 2  | b     | Original manufacturer of the   |        | II    |
| 8  |       | bearing (component contains    |        |       |
|    |       | outer ring, cage and rollers)  |        |       |



| 2<br>9 | b | Converter of the bearing (e.g. on synthetic cage)                               | If applicable                                                                                                     | Ι |
|--------|---|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---|
| 3<br>0 | b | Date of manufacture of the bearing in clear or coded form                       | <ul> <li>for existing wheelsets already in service: if available</li> <li>for new wheelsets: mandatory</li> </ul> | Ι |
| 3      | b | Cage design type (e.g. material<br>polyamide, brass with steel<br>rivet, steel) |                                                                                                                   | Ι |
| 3      | b | Type of grease                                                                  |                                                                                                                   | Ι |

RISTRY



## 9.5 Medium and Heavy Wheelset maintenance

| Ν | Tim | Designation                    | Remark | cate- |
|---|-----|--------------------------------|--------|-------|
| 0 | e-  |                                |        | gory  |
| 3 | а   | Date of maintenance            |        | Ι     |
| 3 | а   | Applicable maintenance pro-    |        | Ι     |
| 4 |     | gram                           |        | Ι     |
| 3 | а   | Maintenance level              |        | Ι     |
| 3 | а   | Maintenance workshop / site    |        | Ι     |
| 3 | b   | Last maintainer of the bearing |        | Ι     |
| 7 |     | (if                            |        |       |
|   |     | different from mainte-         |        |       |
| 3 | a   | Date of next planed overhaul   |        | Ι     |
| 8 |     | of                             |        |       |

### 9.6 Vehicle in which the wheelset is built in

| Ν | Ti  | Designation                     | Remark       | cate- |
|---|-----|---------------------------------|--------------|-------|
| 0 | me- |                                 |              | gory  |
| 3 | с   | Keeper of the wagon             |              | Ι     |
| 4 | с   | Vehicle number                  |              | Ι     |
| 4 | c   | Vehicle UIC letter code         |              | Ι     |
| 1 |     | (e.g.Shimmns)                   |              | II    |
| 4 | c   | Vehicle class (e.g. 708)        | if available | Ι     |
| 4 | c   | Maximal authorised axle load    |              | Ι     |
| 3 |     | (regarding the vehicle)         |              | II    |
| 4 | c   | Date of wheelset mounting       |              | Ι     |
| 4 | c   | Date of wheelset dismounting    |              | Ι     |
| 4 | c   | Mileage of the wheelset         |              | Ι     |
| 6 |     | respective to the period of use |              | II    |
|   |     | per vehicle if available        |              |       |

### 9.7 Irregularities

Note: since applying the traceability system

| Ν | Ti  | Designation | Remark | cate- |
|---|-----|-------------|--------|-------|
| 0 | me- |             |        | gory  |



| 4 | а | Irregularities | Special examinations in case of                                                                                                                               | Ι  |
|---|---|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7 | a | inegularities  | remarkable damages (e.g. de-<br>railments, overload, short- circuits<br>via the axle-bearing, high water,<br>broken wheels, broken axle, wagon<br>collisions) | II |
|   |   |                | (description of the cause, execu-<br>tion workshop, date)                                                                                                     |    |



## 10 Measures resulting from lack of traceability

**1.** If in a wheelset maintenance level (with axle boxes opened) one or two of the following information for an individual wheelset is/are missing:

- manufacturer
- manufacturing date
- manufacturing standard

the ECM has to decide according to its experience with its axle population about the measures to be applied. At minimum, the axle has to be subject to immediate NDT (only once).

If no indication at all is given, the axle must be **scrapped**.

**2.** If the existence of the following data for an individual wheelset cannot be proven on paper, databases, data band... (detected during the acquisition according to the European Wheelset Traceability scheme or on special request):

- workshop of last maintenance activity
- date of last maintenance activity
- type of last maintenance activity

then the axle has to be **subject to immediate NDT (only once)**. NDT for the axle must be performed in all cases 1. and 2. according to the relevant existing rules and after publication (in 2010) acc. to the ECCM criteria (see below).

**3.** The ECM/keeper has to decide according to its experience with the operational conditions of the axles if the non traceable axle has been used in accordance with its design or with high performance parameters.

If this is not identifiable, the **most severe** NDT conditions according to the "ECCM Continued High Performance Operation" rules must be applied in the future maintenance of the axle (see below, ECCM clause *5. special regimes*).

The above mentioned measures are communicated in advance to their publication in the ECCM which are going to be introduced in short term (2010) in the European Sector. In the step after, the measures mentioned here (and the ECCM in a whole) will be integrated in the EN 15313.



ANNEX 3.4.B.: EUROPEAN WHEELSET TRACEABILITY (EWT) FOR FREIGHT WAGON AXLES Implementation status

# European Wheelset Traceability for freight wagon axles (EWT)

# Intermediate implementation status as per 08/2011

Joint Sector Group for ERA Task Force on wagon/axle maintenance



# **General:**

First of all, the Sector would like to state clearly that the required information for all wheelsets in freight wagons is given and ensures full traceability of each wheelset. Traceability is available by physical signs on the wheelset and by the documentation of the production and the maintenance in case of necessity. At the moment, most of the keepers have no central electronic database for traceability.

To improve and to harmonize traceability further, and to reduce the time for analyzing in case of incidents, the sector will collect the data listed in this document.

The aim of the EWT is to:

- trace wheelsets in case of incidents and to reduce the risk for further incidents due to similar reasons.
- trace in case of incidents the service conditions of a wheelset in the past and also its core item, the axle.
- trace the applied maintenance regime and which non destructive tests have been done on the wheelset.

In case wheelset defects will be detected, the keeper is able to select concerned wheelsets by the aid of EWT. This allows the keepers and NSA's to carry out appropriate measures.

European Wheelset Traceability will be integrated in the updated version of EN 15313.

# **Questionnaire:**

## • To the EWT bodies:

- EWT Implementation guide translated
- EWT Implementation guide submitted to the respective keeper



## • To the Keeper (via the EWT bodies):

- Regarding European Wheelset Traceability
  - Start of developing an electronic database (Done or estimated time)
  - Electronic database developed (Done or estimated date)
  - Start of data acquisition (Done or estimated time)
- Regarding special wheelset data
  - Traceable wheelsets regarding wheelset data\*
  - Traceable wheelsets regarding wagon number

## • To the Keeper (via the EWT bodies):

•Regarding European Wheelset Traceability •Regarding special wheelset data

> \* wheelset data (on paper or by database): wheelset number (Data Nr. 1 in EWT) wheelset type (Data Nr. 2 in EWT) date of last maintenance (Data Nr. 33 in EWT) date of next maintenance (Data Nr. 38 in EWT) workshop of last maintenance (Data Nr. 36 in EWT)



## • Questionnaire:

| Start of developing    | Electronic data- | Start of    | Traceable wheel-   | Traceable wheel- |
|------------------------|------------------|-------------|--------------------|------------------|
| an electronic database | base developed   | data acqui- | sets reg. wheelset | sets reg. wagon  |

## • Feedback from the 2<sup>nd</sup> survey in total (from 105 Keeper – 66 Keeper 1<sup>st</sup> survey)



# Feedback ratio in total

Version 1.0



Feedback from the 2nd survey per country in % in relation to the total GCU wagon number per country





Feedback from the 2nd survey per country in % in relation to the total GCU wagon number per country and number of GCU Wagons per country





## EWT participating countries (countries with feedback)

- Austria
- Belgium
- Bulgaria
- Denmark
- France
- Germany
- Hungary
- Italy
- Luxembourg
- Netherlands
- Poland
- Portugal
- Romania
- Slovenia
- Spain
- Sweden
- · Switzerland
- United Kingdom













Traceable Wagons reported in relation to the number of GCU



Version 1.0



### Traceable Wagons reported in relation to the number of reported wagons per




## **Conclusion:**

## Implementation of EWT:

- The 2<sup>nd</sup> survey on EWT Implementation status is representing approx. 75% (64% 1<sup>st</sup> survey) of GCU wagons.

- Received feedback from 105 Keeper (66 Keeper 1<sup>st</sup> survey)

- The prevailing part of this survey (96% - 89% 1<sup>st</sup> survey) has already started or finished the developing of an electronic database.

- 79% (2/3 1<sup>st</sup> survey) of the keeper of this survey has already finished the developing of an electronic database.

-94% (94% 1<sup>st</sup> survey) of this survey have already started with the data acquisition.

## Survey regarding special wheelset data:

- 89% (90% 1<sup>st</sup> survey) of the wheelsets in this survey are traceable regarding the inquired wheelset data

- 88% (88% 1<sup>st</sup> survey) of the wheelsets in this survey are traceable regarding the wagon number